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1. EXECUTIVE SUMMARY 

 

1.1 Industry Problems 

Incoming stock from casting and forging suppliers currently varies to the point that standard 

machine tools cannot adequately respond the existing material condition in the as-programmed 

state. The machine tools inability to dynamically respond to material stock variation results in 

broken tooling, scrap parts, increase man hour investment in trying to machine parts and can 

drive severe delays that impact the entire manufacturing value stream from foundries to OEMs. 

The manufacturing community has attempted to solve this problem through part probing in the 

machine tool, programming sub-routines in the controller, or through manual adjustments made 

by the machinist. The current approach has yielded a sub-optimal process that still requires 

significant human intervention and does not guarantee a conforming part.  

1.2 Goals and Outcomes 

The goal of the IMVM project was to generate an automated system by which a manufacturer 

can compensate for machine tool workspace (machine tool) errors induced due to part, fixture, 

tooling, or machine tool errors. An automated process would drive significant reductions in new 

part and new fixture setup times, and identifying parts delivered with significant variations, in 

turn minimizing machining requirement to bring the parts within specific parameters, reducing 

the number of scrapped parts, manual intervention and machining setup time. The innovations 

from IMVM Project are focused on improving the present state of technology, yielding significant 

process improvement directly impacting reliability on parts, reducing the time to determine 

whether a part can be brought within specifications by machining, or quickly identifying if a part 

needs to be scrapped or returned to the supplier before spending man hours machining a part in 

an attempt to bring it into required specifications.  To address the goal, two major technologies 

have been developed and validated from this project. First one is machine tool Volumetric Error 

Compensation (VEC) technology to measure machine tool error, generate error model and 

compensate the error through machine compensation table. Second one is Adaptive Machining 

(AM) technology using compensated tool path to accommodate the geometric variations on the 

incoming parts.  

From this project, DMDII industrial members will realize decreased process ramp up time, 

scraped parts, quick identification of parts variation, reduction of man hours used to machine 

parts that are out of specifications, quicker feedback to suppliers regarding significant variations 

in their stock, a reduction in the time needed to set up a fixture due to the front end identification 

of variations of the parts needed for an entire fixture and driving overall improvement in the 

manufacturing process by enabling automated identification of variations in parts.    
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2. PROJECT REVIEW 

This project team provides two separate technologies, one to compensate for machine 

volumetric error, the other to accommodate for incoming parts variations. To compensate for 

machine volumetric error, the academic partners helped develop standard procedures to 

measure the machine tool positional information using a laser tracker and develop customized 

computational methods to general volumetric error model from this measured positional 

information. Then, this error model was interpreted into 25 compensation tables with 1000 

interpolation points and compensated modeled errors through the machine controller. More 

than 80% machine volumetric error reduction has been accomplished with a production machine 

asset. To achieve accommodating incoming parts variations, both on/off-line scanning 

approaches and virtual gage software were developed to determine the material condition of the 

incoming part. With this tool, an objective decision whether to reject the incoming part or not 

can be made before even cutting any metal. Furthermore, with acceptable parts, the software 

was able to incorporate the optimized offset information with the existing program to achieve 

adaptive machining based on scanned geometric variations and minimized the risk of tooling 

interference.   

3. KPI’S & METRICS  

Section should minimally include the following:  

Metric of machine error 
compensation 

Baseline Goal Results Validation Method 

Time required for 
measurement  

16 hours 
Less than 6 

hours 
Less than 
5.5 hours 

Validated on 4-axis 
machine 

(4mx2.2mx2.5m) 

Comp/uncomp mean 
residual improvement  

- 
More than 

80% 
85% 

Validated on 4-axis 
machine 

(4mx2.2mx2.5m) 

Difference from B5 test - 
Less than 

20% 
Less than 

10% 
Diagonal error 

comparison 

Training time 24 hours + 
Less than 
16 hours 

Less than 
16 hours 

Reviewed with 
technician 

 

Metric of adaptive 
machining 

Baseline Goal Results Validation Method 

Compensate locater 
variation 

- 5mm 10mm Production validated 

Software training time - 
Less than 
16 hours 

Less than 
16 hours 

Reviewed with 
operator 
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Scanning & calculation 
time 

- 
Less than 

5% of cycle 
time 

Less than 
5% of cycle 

time 
Off-line scanning 

Insufficient stock detection 
rate 

- 90% 
Nearly 
100% 

Lan and production 
validation 

System cost - 
Less than 

$100k 
Less than 

$100k 
Hardware and 

engineering costs 

 
 
4. TECHNOLOGY OUTCOMES 

 Machine tool error compensation  

4.1.1 System Overview 

The Volumetric Error Compensation (VEC) component of this project involved the validation and 
use of VEC techniques to measure and model error in a machine tool using a laser tracker and 
active target and generate detailed compensation tables that can be used to correct the modeled 
error and improve machine accuracy. Figure 1 shows a flow chart of the operational process for 
VEC implementation.  
 

 
Figure 1 VEC System Overview  
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A system for grouping pseudo-random measurement points within the workspace was developed 
to prevent cable management problems.  VEC modeling software was developed for the PAMA 
machine and several validation tests were run to demonstrate that at least 80% of the error in 
the uncompensated machine could be eliminated and that the VEC measurement collection 
process could be completed in under 6 hours. 

To collect the VEC measurements, a laser tracker and active target are needed capable of 
automatically maintaining line of sight measurements as the machine is moved.  For this project 
the API Radian laser tracker and API active target were used and it is assumed that equipment of 
similar capability will be used.  The Spatial Analyzer (SA) metrology software package from New 
River Kinematics (NRK) was used to capture and export measurements from the laser tracker.    
The development done in this project assumes the use of this metrology software, but the 
general process could be adapted to any metrology system capable of collecting and exporting 
measurements from the laser tracker.  The error modeling software developed for the PAMA 
robot requires a MATLAB software license. The compensation tables produced are 25 tables of 
1000 points each.  This is a greater number and size than most machine tools use by default, 
therefore it is necessary that the controller is set up to allow the use of these compensation table 
sizes and quantities. 

4.1.2 System Architecture 

The hardware system architecture for the measurement process is shown in Figure 2. The API 
Radian laser tracker was mounted in the center of the PAMA table and connected via its control 
box to a computer running the SA metrology software. The API Active Target is mounted on the 
wobble plate which is inserted into one of two tool shafts and mounted into the spindle of the 
machine. A photo of the actual hardware is shown in Figure 3. 
 

 
Figure 2: VEC measurement hardware architecture 
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Figure 3: VEC measurement hardware setup 

A flow chart of the software architecture showing input and outputs of each of the primary 

components is shown in Figure 4. 

 

Figure 4 VEC software architecture 

4.1.3 System Development 

4.1.3.1 Modeling and Identification Methodologies 

Nominal Kinematics 

Nominal kinematic equations describe the orientation and position information of the tooltip 
with respect to the machine base frame. Given a set of axis commands, the nominal orientation 
and position information can be calculated by transforming from the base frame through a series 
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of coordinate frames that are set at each axis. Here, the Linear Homogeneous Transformation 
(LHT) is used between consecutive frames.  The transformation from Frame i-1 to Frame i is 

 

1 1 1 1

, , , ,

1 1 1 1

1 , , , ,

1 1 1 1

, , , ,

0 0 0 1

i i i i

i x i x i x i x

i i i i

i i y i y i y i y

i i i i i

i z i z i z i z

n o a p

n o a p

n o a p

− − − −

− − − −

−

− − − −

 
 
 =
 
 
 

T ,  (1) 

where 1i

i

−
T  is the transformation matrix from Frame i-1 to Frame i, 1 1 1 1

, , ,

T
i i i i

i i x i y i zn n n− − − − =  n , 

1 1 1 1

, , ,

T
i i i i

i i x i y i zo o o− − − − =  o , 1 1 1 1

, , ,

T
i i i i

i i x i y i za a a− − − − =  a  and  1 1 1 1

, , ,

T
i i i i

i i x i y i zp p p− − − − =  p  are the 

orientations and translations of the x, y and z axes of Frame i with respect to Frame i-1. The PAMA 
machine is a five-axis machine tool with four degrees of freedom (note the W and Z axes are in 
the same direction). A schematic of the manipulator is shown in Figure 5. The Active Target 
denotes the location where measurements are obtained. 

x0

z0

y0

qB
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z1

y1
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y2

x5

z5

y5

qX

qZ

LT,Z
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x3

z3

y3qY

x4

z4

y4

qW

 
Figure 5: Schematic of kinematic structure with coordinate frames and kinematic model 

parameters labeled for PAMA machine tool. 

Following the series of coordinate frames in Figure 5, the nominal forward kinematic 
model for the PAMA machine tool is 

 
( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4

1 2 3 4 5B X Z Y Wq q q q q=
n

F q T T T T T
, (2) 

where q = [qB, qX, qZ, qY, qW] is the vector of axes commands and 
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 ( )

( ) ( )

( ) ( )
0

1

cos 0 sin 0

0 1 0 0

sin 0 cos 0

0 0 0 1

B B

B

B B

q q

q
q q

 
 
 =
 −
 
 

T , (3) 

 ( )1

2

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

X

X

q

q

 
 
 =
 
 
 

T , (4) 

 

 ( )2

3

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

Z

Z

q
q

 
 
 =
 
 
 

T , (5) 

 

 ( )3

4

1 0 0 0

0 1 0

0 0 1 0

0 0 0 1

Y

Y

q
q

 
 
 =
 
 
 

T , (6) 

 

 ( )4

5

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

W

W

q
q

 
 
 =
 
 
 

T . (7) 

 
Error Modeling 

The method used to describe the machine tool geometric errors is called the Axis Perturbation 
(AP) Model Method, which is well-suited for generating machine tool compensation tables. This 
method regards the geometric errors as small position-dependent perturbations to the nominal 
axis commands.  The model is described as 
  

 ( ) ( )( )AP n= +F q F q q q , (8) 

 

where ( ) ( ) ( ) ( ) ( ) ( )B X Z Y Wq q q q q =  q q q q q q q  is a vector of functions that perturb the 

nominal axis commands. The axis command perturbation functions are selected as an uncoupled 
sum of perturbations of each axis command (qB, qX, qZ, qY, qW) as, 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

B BB B BX X BZ Z BY Y BW W

X XB B XX X XZ Z XY Y XW W

Z ZB B ZX X ZZ Z ZY Y ZW W

Y YB B YX X YZ Z YY Y YW W

W WB B WX X WZ Z WY Y WW W

q f q f q f q f q f q

q f q f q f q f q f q

q f q f q f q f q f q

q f q f q f q f q f q

q f q f q f q f q f q

= + + + +

= + + + +

= + + + +

= + + + +

= + + + +

q

q

q

q

q

, (9) 

 
where fij(qj) is a scalar function mapping the axis command, qj, on axis j onto a perturbation to 
the command for axis i. 

To capture the position dependency of the error terms and describe the unknown 
functions fij(qj), a set of basis functions, which are orthogonal and have a similar scale over an 
interval [-1,1], are used. A set of polynomials that satisfy these two requirements are Chebyshev 
polynomials. A linear relationship is used to map the positive axis travel limit to 1 and the negative 
travel limit to -1. The Chebyshev polynomials are 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 3

0 1 2 3

4 2

4 1 1

1,  ,  2 1,  4 3 , 

8 8 1, , 2m m m

c c c c

c c c c

       

      + −

= = = − = −

= − + = −
, (10) 

 
where m denotes the Chebyshev polynomial order. The sum of Chebyshev polynomials is 
 

 ( ) ( ) ( ) ( )0 1 1 2 2 m mC a a c a c a c   = + + + + . (11) 

 
Then, the error terms in Error! Reference source not found. can be represented by mth order 

Chebyshev polynomials as  

 ( ) ( ) ( ) ( )0 1 1 2 2ij j ij ij j ij j mij m jf q a a c q a c q a c q= + + + + , (12) 

where i and j denotes the axes.  In this framework, modeling of the error kinematics corresponds 
to selecting a sufficient order m and appropriate model coefficients, a0ij, a1ij,…, amij. 
 

Measurements of nominal and actual kinematic models  

When taking measurements, an Active Target is rigidly attached to the machine tool spindle and 
measurements are taken with respect to a measurement frame which, in general, is not 
coincident with the machine tool’s table base frame. Therefore, a transformation from this 
measurement frame to the machine tool base frame is needed. Incorporating the static 
translations from Frame 5 to the Active Target and the measurement frame to the machine tool 
base frame, the nominal and actual kinematic models, respectively, are 
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 ( ) ( ) 5

0

m m

n n Tq q=p T F p , (13) 

 

 ( ) ( )' ' 5

0 '

m m

a AP T=p T F pq q , (14) 

 

where ( )m

np φ  = [xn,yn,zn,1]T is the predicted nominal world space position vector of the Active 

Target consisting of the xyz coordinates of the tool in mm with respect to the nominal 

measurement frame, ( )'m

ap φ  = [xa,ya,za,1]T is the predicted actual world space position vector of 

the Active Target consisting of the xyz coordinates of the tool in mm with respect to the actual 

measurement frame, 0

m
T  is the transformation from the nominal measurement frame to the 

machine table base frame, '

0

m
T  is the transformation from the actual measurement frame to the 

machine table base frame, 5

Tp  is the translation from the nominal spindle tip position to the 

nominal Active Target position, 5

'Tp  is the translation from the  nominal spindle tip position to 

the actual Active Target position. As the actual measurement frame is arbitrarily constructed and 
placed in the measurement software, there is an error transformation between the actual 

measurement frame and the nominal measurement frame. Thus, '

0

m
T  contains two components: 

a nominal component and an error component. That is, 
 

 ' '

0 0

m m m

m=T T E , (15) 

 

where 
'm

mE is a static error transformation from the actual measurement frame to the nominal 

measurement frame 
 

 

,0 ,0 ,0

,0 ,0 ,0'

,0 ,0 ,0

1

1

1

0 0 0 1

Z Y X

Z X Ym

m

Y X Z

  

  

  

− 
 

−
 =
 −
 
 

E , (16) 

 
where εi,0 is a rotation about the ith axis (rad) of the actual measurement frame, and δi,0 is a 
translation along the ith axis (mm) of the actual measurement frame. Through an appropriate 
choice in the measurement software, the actual measurement frame can be put close to the 
machine table base frame such that the nominal measurement frame and the machine tool base 

frame is the same and 0 4

m =T I , where I4 is a 4×4 identity matrix. Since the Active Target is rigidly 

attached to the spindle, the translation from the spindle tip position to the measurement point 
is 
 

 5 5

' '

T

T T T= +p p p , (17) 
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where '

T

Tp  is a static error translation from the nominal target point to the actual target point. 

Since the tool direction is along the qW direction, the tool length nominal and error translation 
only have an element along the z5 axis, 
 

 ' ,0 0 0
TT

T T Z =  p , (18) 

 
and 
 

 5

,0 0 1T T ZL =  p , (19) 

 
where δT,Z (mm) is a translational error to correct the nominal tool length component LT,Z (mm).  

To evaluate the results of modeling performance, the nominal residual, i.e., the error 
between the predicted nominal position and actual measured position is 
 

 ( )'n m

j n j j= −r p q m , (20) 

where mj = [xm,ym,zm,1]T is the measurement vector corresponding to the command set qj 
composed of the measured xyz positions of the active target in mm. Similarly, the model residual, 
i.e., the error between the predicted modeled position and the actual measured position, is 
 

 ( )'a m

j a j j= −r p q m . (21) 

 
The magnitude of the nominal and actual residuals, respectively, are found using the Euclidean 
norm, 
 

 
( ) ( ) ( )

( ) ( ) ( )

2 2 2

, , , , , , 2

2 2 2

, , , , , , 2

n n

j p n m j p n m j p n m j j

a a

j p a m j p a m j p a m j j

r x x y y z z

r x x y y z z

= − + − + − =

= − + − + − =

r

r

.  (22) 

 
Identification 

Once the complete actual measurement model has been derived as in 
Error! Reference source not found., the task becomes to determine the Chebyshev polynomials 
coefficients for each error term. The polynomial order should be large enough to capture all of 
the dominant error characteristics, but not too large as to over fit the data. The determination of 
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the coefficients is done using a maximum likelihood estimator as described in [1]. Refer to [1] for 
details regarding the method. 
 

4.1.3.2 Mechanical Accuracy and Repeatability 

Measurement Device and Accuracy 
Measurement accuracy refers to how accurate the laser tracker can collect measurements. 
Usually, it is expressed by the standard deviation from the normal distribution of measurement 
errors caused by the laser tracker. According to API Radian specifications, the static measurement 
accuracy As=5 ppm (2σ). The measurement standard deviation is  
  

 
2

s
m

A L
 = ,  (23) 

 
where As is the static measurement accuracy (ppm) of the Laser Tracker and L is the characteristic 
distance between the laser tracker and the Active Target (m). At the Caterpillar Technical Center, 
the characteristic distance was about L=3 m. This leads to a computed measurement standard 

deviation of 7.5 umm = . 

 
Mechanical Repeatability 
 
Mechanical repeatability is a measure of how close the tooltip can return to a specific position. 
Bidirectional mechanical repeatability, which is the measure of a machine tool’s ability to return 
to a specific position regardless of the approach direction, is representative in describing the 
machine tool geometric performance. 

The process for calculating the bidirectional mechanical repeatability is as follows. First, 
n measurements are collected for m points. For the ith point, the mean in the x- y-, and z-
directions, respectively, is  
 

 ,

1

1 n

i i j

j

x x
n =

=  , (24) 

 

 ,

1

1 n

i i j

j

y y
n =

=  , (25) 

 

 ,

1

1 n

i i j

j

z z
n =

=  . (26) 
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where xi,j, yi,j, and zi,j are the x, y, and z components, respectively, of the jth measurement of the 
ith point. The Euclidian value of the error between the jth measurement and the centroid of the 
ith point is  
 

 ( ) ( ) ( )
2 2 2

, , , ,i j i j i i j i i j ie x x y y z z= − + − + − . (27) 

 
The mean error, meane , of all the observed errors is the mean mechanical repeatability and the 

largest observed error, maxe , is the maximum mechanical repeatability.  

 ,

1 m n

mean i j

i j

e e
mn

=  , (28) 

 

 ( ),maxmax i je e= , (29) 

 
Also, all the errors are fitted with a gamma distribution. Under the fitted gamma distribution, the 
value under which the area covers 99% of the entire distribution is named as the Gamma error 
 
 

99%Gammae e= . (30)

  
For the Caterpillar event, 10 measurements were collected for 8 positions. Figure 6 shows 

the nominal plot of all the errors and the corresponding definitions for mean error, maximum 
error and Gamma error. Table 1 gives the error values. The Gamma error is about 0.02 mm which 
indicates that with a probability of 99.0% that repeated measurements at the same point will 
stay within in a ±0.02 mm range. 
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Figure 6: Fit of all errors with mean, maximum and Gamma errors. 

 
Table 1: Identified mechanical repeatability of Caterpillar’s PAMA machine tool. 

 
Mean Error 

(mm) 
Maximum 
Error (mm) 

Gamma Error 
(mm) 

Number of 
Points 

Number of 
Cycles 

Repeatability 0.0074 0.0217 0.0200 8 10 

 
Command Repeatability 
 
Unlike mechanical repeatability which is the combination of the motion of all axes, command 
repeatability refers to how repeatable each individual axis is. It is often expressed by a standard 
deviation in commanded positioning error which is calculated by actuating each axis individually 
and taking measurements of a single joint command position as approached from a variety of 
distances. For each of the five axes, ten measurements (five from each direction) were taken at 
one point near the center of the machine’s workspace. The nominal motion is rotary for the B 
axis and linear for other axes.  

For the linear axes, the mean of the ten measurements are calculated. Since the linear 
motion is along one axis, only one axis (x, y or z) measurements information is needed.  Taking 
the x axis as example, the mean of the measurements along the x- direction is calculated, 
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X a X i
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p p
=

=  , (31) 

 
where pX,i is ith measurement along the x- direction and pX,a is the mean value. Then, the linear 
error γX,i (mm) between the ith measurement and the mean value is calculated, 
 

 , , ,X i X i X ap p = − . (32) 

 
For the other axes, Z, Y and W, the same procedure as the X axis is followed and the linear errors,

,Z i , ,Y i  and ,W i , are calculated. 

For the B axis, a circle can be fit to single rotation measurements. This motion is also 
assumed to be planar and only the x- and z-direction components of the measurements are 
analyzed. 
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B a B i

i

x x
=

=  , (33) 
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, ,

1

1

10
B a B i

i

z z
=

=  , (34) 

  

where ( ), ,,B i B ix z  is the ith measurement (mm). Letting the fitted circle center point be ( ), ,,B c B cx z

, the angular error βB,i (deg) between the ith measurement and the centroid ( ), ,,B a B ax z  with 

respect to the circle center point is  
 

 , , , ,

,

, , , ,

arctan arctan
B i B c B a B c

B i

B i B c B a B c

z z z z

x x x x


   − −
= −      − −   

. (35) 

 
 After the linear and rotation errors are calculated for each axis, nominal plots are fit for 
each single axis errors. The command standard deviations are also identified. Figure 7 shows the 
normal distribution of angular and linear errors for each axis and Table 2 lists the identified 
command standard deviations from the normal distributions. 
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Figure 7: Normal distributions of errors of each axis. 

 
Table 2: Identified command standard deviation of each axis. 

Axis Command Standard Deviation 

X 4.9 um 

Y 0.8 um 

Z 2.1 um 

W 3.4 um 

B 0.3×10-3 degree 

 

4.1.3.3 Thermal Effects 

In addition to considering the short-term mechanical repeatabilities, the long-term thermal 
repeatability of both the machine and the laser tracker were evaluated. 
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Hard Points 
During the PAMA calibration in July 2016, two measurements locations, referred to as hard points 
(HP), were setup on the table as shown in Figure 8. These two locations were measured 
continuously throughout the night between the second and third day of the calibration event as 
well as various times throughout the third day between collecting measurement sets. 
 

 
Figure 8: The schematic of the machine table, the placement of laser tracker and three hard 

points. 

 
The measurements of these hard points were then used to determine if any expansion of 

the machine table or deformation laser tracker occurred. In order to get an idea of the amount 
of expansion witnessed in the table, the distance between the two hard points was calculated. 
The plot of these distances versus temperature is shown below in Figure 9. 
 

 
Figure 9: Distance between hard points 1 and 2. 
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While Figure 9 shows a positive relationship between air temperature and distance 
between hard points 1 and 2 for the night measurements, this relationship is clearly nonlinear. 
This is most likely due to the discrepancy between the air temperature and the machine 
temperature. In future thermal deformation measurements of the machine tool, measurement 
of the machine temperature, rather than air temperature, is recommended. 

In addition to examining expansion in the table itself, expansion in the vertical direction 
(perpendicular to the table), which are most likely attributed to either the tracker or the tracker 
mounting block, were also considered. A plot of these measurements is shown below in Figure 
10. 
 

 
Figure 10: Vertical shift of tracker\mounting block. 

From the data in Figure 10, there appears to be linear relationship between the vertical expansion 
and the air temperature that appears to have a fairly constant slope of 0.012 mm/°C. These 
results indicate that the laser tracker experienced thermal expansion with good correlation to 
air temperature. 
 
B5 Test 
In order to better understand the effects of thermal change on the machine as a whole, additional 
data from the B5 test implemented by Caterpillar on 07/14/2016 was examined. To better 
capture thermal effects on the machine, the standard B5 test was modified to last longer in order 
to incorporate temperature varying effects. Similar to a normal B5 test, measurements were 
taken at 11 positions on the W axis with respect to the table position as shown in Table 3. 
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Table 3: Commanded 11 positions on W axis for B5 test. 

Position 1 2 3 4 5 6 7 8 9 10 11 

Command (mm) -50 -120 -190 -260 -330 -400 -470 -540 -610 -680 -750 

 
In each cycle of the test, the full sequence of 11 points was measured forward and backward such 
that each position was measured twice. After each cycle, approximately 10 minutes was waited 
before beginning the next cycle. The cycle was repeated a total of 11 times which was taken over 
about a 1.5 hours period (about 2˚C machine temperature change). With the data from modified 
test, Figure 11 shows the linear errors at different positions under different machine 
temperatures. 

 
Figure 11: Linear errors along W axis with respect to positions from B5 test. 

 
Figure 11 shows the position errors as would typically be displayed in the B5 test, although the 
cycles are typically more closely grouped because there is less delay, and hence less temperature 
change, between them. This figure shows a clear offset in the linear errors at each different 
machine temperature. To better illustrate this point, the linear error was instead plotted against 
machine temperature for each measurement position as shown below in Figure 12. 
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Figure 12: Linear errors along W axis with respect to machine temperature from B5 test. 

Figure 12 shows a clear linear trend between linear error and machine temperature. The slope 
of the linear error with respect to machine temperature as well as the slope of the straightness 
errors with respect to temperature is shown below in Table 4. 
 

Table 4: Rates of linear, straightness error change over machine temperature change from B5 
test. 

Linear 
Error (W) 
(mm/˚C) 

Straightness Error 
(XX) 
(mm/˚C) 

Straightness Error 
(YY) 
(mm/˚C) 

Magnitude 
Error 
(mm/˚C) 

0.060 0.021 0.0015 0.064 

 
From the thermal analysis of both the hard point measurements and the B5 data, there is clear 
evidence that both the machine and the laser tracker experienced thermal expansion. This fact 
should be considered while examining the modeling and validation results shown in the following 
sections. 
 
Feb 2017 Hard Points 
To analyze thermal variance in the tracker and table, measurements of 6 SMRs placed on the 
surface of the table and one in the tracker ‘birdbath’ were taken overnight. Analysis of the July 
2016 event data indicated that measurements taken in absolute distance mode (ADM) showed 
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a radial drift which seemed to have a thermal component, but that interferometer mode (IFM) 
measurements did not show significant drift.  IFM measurements require continuous visibility of 
the reflector to the tracker and any time there is any interference blocking the beam ADM 
measurements are used to initialize further IFM measurements. To correct for the drift, an ADM 
measurement of a known location such as the tracker ‘birdbath’ can be measured in ADM mode 
to determine the radial drift.  For the overnight measurements the radial distance to each SMR 
is shown in Figure 13.  Figure 14 shows the temperature recorded by the tracker. 
 

 
Figure 13: Radial drift overnight. 

 
Figure 14: Temperature overnight. 

 
While there is some visible drift, the total drift observed is of similar magnitude as the 
measurement noise. The temperature variance was less than 1 ºC 
 
Thermal Measurements During Operation 
Thermal data was collected during the measurement of the identification sets during the 
February 2017 testing using the sensors placed for the thermal tests covered in section 4.2. Figure 
15 shows the measurements for the sensors connected to channels 3,4,5 and 7.  Channel 6 was 
disconnected and channels 1,2, and 8 were much noisier and are shown in Figure 16 
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Figure 15: Thermal measurements from the day identification measurements were done 

 
Figure 16: Thermal measurements from the day identification measurements were done. 

 
The largest temperature variations changed by around 1 ºC across the identification 
measurements.  
 
During the measurement of the identification sets, any time the beam was interrupted an ADM 
mode measurement of the tracker birdbath was taken to check for radial drift of the ADM 
measurements. No variance greater than the expected measurement noise was observed, so it 
was determined that the identification measurements did not require radial adjustment to 
compensate for thermal drift of the ADM measurements during that event.  
 
4.1.3.4 Tool Length Difference Observations 

To test the consistency between the two sets of identification data and investigate the thermal 
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0 2 4 6 8 10 12 14 16 18 20 22
18

19

20

21

22

23

24

Time (hrs)

T
em

p 
(C

)

 

 Ch 3

Ch 4

Ch 5

Ch 7

Machine turned off

Approximate time of identification measurements

2 4 6 8 10 12 14 16 18 20 22

17

18

19

20

21

22

Time (hrs)

T
em

p 
(C

)

 

 

Ch 1

Ch 2

Ch 8



26 

 

 

point. If the measurements are consistent and there are no changes in the measurement device 
or machine, the variation in these distances should be equal to the mechanical repeatability of 
the machine. During the July 2016 event, large variations in tool length were observed and this 
was attributed to thermal variation caused by a 3.7 ºC temperature change. During this event the 
temperature change was only observed to be around 1 ºC. Since the temperature change was 
much lower, then any inconsistencies due to temperature would also be expected to be smaller.  
In order to compare these distances to the mechanical repeatability, the following calculation 

was performed.  Let , , ,

T

s i s i s ix y z    be the measurement of the ith point with the short tool 

and , , ,

T

l i l i l ix y z    be the measurement of the ith point with the long tool, the average distance 

between the short tool and long tool length is 
 

 ( ) ( ) ( )
2 2 2

, , , , , ,

1

1 n

s i l i s i l i s i l i

i

d x x y y z z
n =

= − + − + − .  (35) 

 
Thus, the distance error between the short tool and long tool for the ith point is   
 

 ( ) ( ) ( )
2 2 2

, , , , , ,i s i l i s i l i s i l id x x y y z z d= − + − + − − . (36) 

 
A histogram of these distances as originally observed is shown below in Figure 17. 
 

 
Figure 17: The initial observed variation of distance between short tool and long tool 

measurements. 
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 In Figure 17, the distance between measurements with the two different tools has a 
spread of 0.207 mm. This value is around ten times the mechanical repeatability which indicates 
that there is clear inconsistency between the two measurement sets on a similar or greater order 
of magnitude as the July 2016 measurement. From the previous thermal repeatability analysis, 
the observed low temperature variation would not be expected to produce this level of error. 
 Several custom tests were run to isolate the root cause of the persistent error since it did 
not appear to be explainable by thermal variation. The tool length errors were found to correlate 
highly with the incidence angle between the laser and the tool. This incidence angle is illustrated 
in Figure 18 and the tool length errors are plotted with respect to incidence angle in Figure 19. 

 
Figure 18: Illustration of incidence angle. 

 
Figure 19: Tool length differences with respect to incidence angle as originally measured  

 
The cause of this trend was discovered to be that the ADM offset for the active target set in the 
measurement software had been changed to an incorrect value sometime prior to the July 
measurement event. This effectively caused all measurements to be shifted in the radial direction 
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0.9617 mm away from the tracker. After adjusting the data points to reverse this effect, the trend 
with respect to incidence angle disappeared and the tool length errors were reduced.  Figure 20 
and Figure 21 show the tool length error histogram and plotted with respect to incidence angle 
after correction. 

 
Figure 20: Tool length difference histogram after correcting for the erroneous active target 

ADM offset.  Remaining errors are a combination of measurement repeatability plus 
mechanical repeatability plus thermal deformation effects. 

 
Figure 21: Tool length differences with respect to incidence angle after active target ADM offset 

correction 

 
4.1.3.5 Modeling Implementation and Compensation 
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Model Parameter Standard Deviation 
During the identification process, due to the property of identification algorithm, a set of model 
parameter standard deviation should be used to determine the model parameters (i.e., the 
coefficients of the Chebyshev polynomials). In the identification process, the model parameters 
are assumed to have zero mean and normal distribution and behave as tuning parameters. 
Through multiple tuning attempts, the standard deviations used in identifying the modeling error 
parameters for PAMA machine tool are determined as listed in Table 5. 
 

Table 5: Model parameter standard deviations for each joint error model. 

Frame Rotation (rad) Translation (mm)  

Base 0.1 5 

B Axis 0.005 

X Axis 0.05 

Z Axis 0.05 

Y Axis 0.05 

W Axis 0.05 

 
Measurements 
A picture of the machine tool work cell is shown in Figure 22. Within the work cell space, 290 
quasi-random axis-space points were generated to model the kinematic errors, and 50 quasi-
random axis-space points were generated to validate the kinematic error model. Table 6 shows 
the minimum and maximum axes limits used in this study, and Figure 23 shows the distribution 
of model identification and model validation points with respect to machine table frame. 
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Figure 22: Machine tool work cell and table base frame 

Table 6: Minimum and maximum commands used for modeling and validation. 

Axis Minimum Command Maximum Command 

B 0 deg 360 deg 

X -1250 mm 1250 mm 

Z 900 mm 2200 mm 

Y 350 mm 2500 mm 

W -800 mm -200 mm 

 

The point generation code developed creates pseudo-random points distributed throughout 

the joint space of the machine.  The inputs available are the following: 

 

Inputs: MeasPnts – Number of identification points to be generated; integer > 0 

 ID_file – File name to write identification points; string, should end in “.mpf” 

ValPnts – Number of validation points to be generated; integer > 0 

VAL_file – File name to write identification points; string, should end in “.mpf” 

rng1 – X axis range to generate points over; vector with 2 elements 

rng2 – Y axis range to generate points over; vector with 2 elements 

rng3 – Z axis range to generate points over when B is near 0° or 180°; vector with 2 elements 
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rng3b – Z axis range to generate points over when B is near 90° or 270°; vector with 2 elements 

rng4 – W axis range to generate points over; vector with 2 elements 

rng5 – B axis range to generate points over; vector with 2 elements 

longTool – estimated tool length when using long tool mount; scalar > 0 

shortTool – estimated tool length when using short tool mount; scalar > 0 

speed – maximum speed for each axis; in the order [X,Y,Z,W,B] 

Outputs: Identification set and validation set data files 

To prevent the laser tracker cord from wrapping itself around the tracker through continuous 

rotation of the machine B axis, modifications were made to the point generation such that rather 

than ordering the commands randomly and then using a nearest neighbor sort directly, the points 

are grouped into four quadrants of the B axis.  Additional movement points are added between 

execution of each quadrant to rotate the table into the next quadrant in a controlled B axis 

direction. The B axis should always be rotated to near 0 degrees before running the program, 

which then rotates the table through approximately 270 degrees to the farthest quadrant before 

working back to the starting position.  The identification and validation points used for the PAMA 

at the Caterpillar Tech Center are shown in Figure 23. 

 
Figure 23: Display of Identification and Validation Point Distribution 
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After setup, the generated points are then measured with the laser tracker.  The machine moves 

to each of the commanded points and the laser tracker measures the actual location of the active 

target. The difference between the desired location of the machine commanded and the actual 

location moved to is the residual error. Figure 24 illustrates the three types of residual error for 

each point.  The nominal residual is that from the uncompensated actual measurement of the 

machine.  An error model is then generated that attempts to fit a model to the measured 

residuals.  The modeled residual is the predicted remaining error from each point’s measurement 

if the model error at that point is removed via compensation.  The Compensation residual is the 

residual of the actual measurements made on the machine after applying compensation tables.  

 

Figure 24: Illustration of Residuals 

 

Figure 25: Sample Modeling Results 
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Figure 26: Sample Modeling Result with Compensation Validation Measurements 

 Compensation Functions 

Compensation tables were generated from the model and uploaded to the machine.  The 
validation set was re-measured with compensation enabled to test the validity of the 
compensation. The 25 error functions generated by the modeling algorithm are shown below in 
Figure 27. These functions are discretized in order to generate the compensation tables that are 
loaded onto the PAMA controller. 
 
From Figure 27, there are three major features of the error functions to consider. First, these 
functions show that the compensation on the B axis is small with the largest error being 0.1 
millidegrees. Additionally, the compensation functions change between the three compensation 
events with ZY, WY, and YX being the most similar between all three compensation events. 
Finally, the compensation on Z and W are nearly identical. This is most likely due to these axes 
being redundant, so the modeling algorithm divides the error evenly between these two axes. 
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Figure 27: Identified PAMA error model functions. 
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 Compensation Implementation Errors Corrected 
The compensation tables generated during the previous Module 1 Final Test attempt in May 2017 
did not result in the expected performance shown by the model. During the May event, it was 
determined that the compensation was not being applied based on either the Machine 
Coordinate System (MCS), or Work Coordinate System (WCS), but rather on an internal ‘Position 
Actual Value Measurement System’ (PAVMS) which had offsets in the Z and Y axes from the 
values used for the MCS. Additionally, the PAVMS for the B axis was found to extend indefinitely 
rather than always yielding a value between 0-360° as the MCS does. After identifying and 
correcting for these issues on May 5, the compensation reported on the machine was verified for 
all tables to be as expected, except for the tables which output compensation for the B axis.  The 
compensation expected in the B axis was extremely small in the generated tables – barely above 
the minimal precision reported by the machine – so there was not enough precision to determine 
the root issue causing the error without loading a new set of tables with exaggerated 
compensation in the B axis. Implementation of the tables and off-site post event analysis 
revealed that the applied compensation appeared to be in the opposite direction of the reported 
compensation. Figure 28 shows the measured difference in the compensated versus the 
uncompensated validation set from the May 2017 event, as well as the expected compensation 
in the Y axis based on the tables. 
 

 
Figure 28: Difference between compensated and uncompensated validation sets compared 

with y compensation values. 

 
During the June 2017 event the supposition that the applied compensation on the Tech Center 
PAMA machine was in the opposite direction of the compensation reported by the controller was 
confirmed. That is, the compensation value reported by the controller is from the comped value 
to the uncomped rather than the amount that was added to the uncomped position. To do this, 
the cross table that compensates the Y axis motion based on the Z axis position was uploaded to 
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measured with the laser tracker each with the table enabled as well as with the table disabled. 
The difference between the compensated and uncompensated measurements of these six points 
matched the predicted compensation amount in Y within the repeatability of the machine 
indicating that the table was performing as expected. Once this compensation table had been 
verified, tables were uploaded for all axes except for the compensation onto the B axis. With all 
20 of these tables, the same six points were measured with the laser tracker. As with before the 
measured compensation amount (this time in X, Y, and Z) was calculated and compared to the 
predicted compensation amount. These values again lined up within machine repeatability, 
which showed that the full set of tables performed as expected. After the other axes were 
verified, B axis tables were uploaded with compensation large enough to see on the controller. 
The controller recorded compensation value for each of these tables at the same six locations in 
the workspace were compared to the predicted compensation and lined up to the controller 
resolution. After the controller values for the B axis were verified, a setting in the controller was 
discovered to bound the B axis between 0 and 360 degrees, which resolves the issue of B axis 
inputs leaving the compensation table’s range. Through this verification, it is possible to apply 
compensation to all axes on the PAMA machine. 
 

4.1.3.6 B5 Comparison 

To compare the quality of the measurements captured with the laser tracker for use in 
generating the VEC error models with traditional error measurement using B5 standard testing 
equipment, a measurement test of a body diagonal was taken with B5 equipment and then 
repeated using the laser tracker.  Figure 29 shows the comparison between the two 
measurements.  The left image shows the linear error measured in the body diagonal both with 
the compensation generated in a previous test turned on and off. It should be noted that the 
compensation had been generated under significantly different thermal conditions and was not 
designed to compensate for thermal error. The laser tracker measurements and the B5 
measurements agree closely in both cases, with the histogram on the right showing that the 
maximum difference between the error calculated by each method was less than 15 microns. 
 

 
Figure 29: Comparison of laser tracker to B5 body diagonal measurement 
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4.1.4 Users & Use Cases 

The VEC measurement and model generation was tested multiple times on the PAMA machine 
at the Caterpillar Tech Center with measurement events in July 2016, February 2017 and May 
2017. Compensation was not implemented during these events. A full test of both 
measurement, error modeling, and validation of compensation was performed in June 2017.  A 
summary of the results for the final event including validation of the compensation is given in 
Table 7.  The time required for each portion of the process for this event is given in Table 8 
 

Table 7: VEC measurement results 

  99% Gamma Mean 

Date 
Data Set Type Residual (mm) 

% 
decrease 

Residual 
(mm) 

% 
decrease 

June 
2017 

Identification 
Nominal 0.442 N/A 0.239 N/A 

Model 0.064 85.6% 0.026 89.1% 

Validation 

Nominal 0.437 N/A 0.230 N/A 

Model 0.066 84.9% 0.030 86.9% 

Comp. 0.095 78.2% 0.038 83.7% 

 

  99% Gamma Mean 

Date 
Data Set Type Residual (mm) 

% 
decrease 

Residual 
(mm) 

% 
decrease 

May 
2017 

Identification 
Nominal 0.458 N/A 0.305 N/A 

Model 0.074 83.9% 0.030 90.0% 

Validation 
Nominal 0.432 N/A 0.313 N/A 

Model 0.065 85.1% 0.030 90.4% 

Jan 2017 Identification 
Nominal 0.335 N/A 0.175 N/A 

Model 0.077 77.1% 0.029 83.7% 

July 2016 

Identification 
Nominal 0.587 N/A 0.385 N/A 

Model 0.124 78.8% 0.053 86.2% 

Validation 
Nominal 0.487 N/A 0.302 N/A 

Model 0.185 62.0% 0.095 68.5% 

 
 

Table 8: VEC Process Timing 

Activity Start time Approximate Duration 

Warm up / Tool center check 7:19 AM 1 hr 5 min 

Base frame and repeatability 8:24 AM 36 min 

Machine down 9:00 AM 2 hr 50 min 

Re-warm up 11:50 AM 50 min 
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Short tool ID set 12:40 PM 1 hr 20 min 

Tool change / centering 2:00 PM 15 min 

Warm up 2:15 PM 20 min 

Long tool ID set 2:35 PM 1 hr 20 min 

Validation (uncompensated) 3:55 PM 20 min 

   Total measurement time  5 hr 16 min 

   Compensation generation 4:15 PM 8 min 

Compensation upload 4:23 PM 20 min 

Warm up 4:43 PM 20 min 

Validation (compensated) 5:03 PM 18 min 

   Total compensation time  1 hr 6 min 

    
   Total Work Time  6 hrs, 25 min 

 
Error! Reference source not found. summarizes the Machine Tool Error Compensation success c
riteria, the measured values and the resulting evaluation.  
 

Table 9 VEC Success Criteria Summary. 

Metric of machine error 
compensation 

Baseline Goal Results Validation Method 

Time required for 
measurement  

16 hours 
Less than 6 
hours 

Less than 
5.5 hours 

Validated on 4-axis 
machine 
(4mx2.2mx2.5m) 

Comp/uncomp mean 
residual improvement  

- 
More than 
80% 

85% 
Validated on 4-axis 
machine 
(4mx2.2mx2.5m) 

Difference from B5 test - 
Less than 
20% 

Less than 
10% 

Diagonal error 
comparison 

Training time 24 hours + 
Less than 
16 hours 

Less than 
16 hours 

Reviewed with 
technician 

 
 

4.1.5 Software and System Requirements 

The methodology was developed with the API Radian laser tracker and API Active Target as the 

measurement hardware and Spatial Analyzer as the metrology software used for collecting the 

measurement data from the laser tracker.  The methodology could be easily adapted to any 

metrology hardware and software capable of recording with similar or better accuracy the 

absolute position of a target placed in the machine spindle as the machine moves throughout its 

workspace.  A PC for acquiring measurements, calculating error models and generating 

compensation tables is needed, with a license for Spatial Analyzer (or equivalent metrology 
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software) and MATLAB. The standard MATLAB toolboxes are all that is required, with the custom 

functions which were written given in the following list: 

4.1.5.1 List of Functions 

Cheby.m 

Inputs: C – coefficients of the Chebychev Polynomial; vector (row or column) 

  qbar – normalized joint angle; scalar between -1 and 1 

 

Outputs: Val – value of the Chebychev Polynomial; scalar 

Require Functions: N/A 

Function Description: This function is used to calculate Chebychev Polynomial values which are 

used as the basis function for error modeling. This code is formatted as a function and can be 

called from other functions. 

Changes Necessary for Other Machines: N/A 

 

CheckComp.m 

Inputs: Robot – stores all machine dependent values; structure 

  pts – list of joint commands; matrix: each row is a set of commands [X,Y,Z,W,B] 

  tables – set of compensation tables; matrix: each column is a table, each row is a point 

in 

  that table. Table order is B→B, X→B, Z→B, Y→B, W→B, B→X, X→X, 

  Z→X, Y→X, W→X, B→Z, X→Z, Z→Z, Y→Z, W→Z, B→Y, X→Y, Z→Y, 

  Y→Y, W→Y, B→W, X→W, Z→W, Y→W, W→W 

Outputs: Comp – total compensation on select points; matrix: each row is the compensation on 

     the corresponding set of joint commands in pts in the order [X,Y,Z,W,B] 

Require Functions: N/A 

Function Description: This function calculates the predicted compensation from the 840D 

controller at the given joint location with the inputted tables active. This code will throw an 

error if the inputted joint command is less than the minimum joint value in the Robot structure. 

This code is formatted as a function and can be called from other functions. 
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Changes Necessary for Other Machines: For other, 5 axis machine no change necessary but be 

very careful about the order of joints, joint commands, and tables. For other machine, add or 

subtract the necessary number of axes. Again be very careful of the ordering. 

 

CheckPoints.m 

Inputs: MeasPnts – Number of identification points to be generated; integer > 0 

  ID_file – File name to write identification points; string, should end in “.mpf” 

  ValPnts – Number of validation points to be generated; integer > 0 

  VAL_file – File name to write identification points; string, should end in “.mpf” 

  rng1 – X axis range to generate points over; vector with 2 elements 

  rng2 – Y axis range to generate points over; vector with 2 elements 

  rng3 – Z axis range to generate points over when B is near 0° or 180°; vector with 2 

elements 

  rng3b – Z axis range to generate points over when B is near 90° or 270°; vector with 2 

  elements 

  rng4 – W axis range to generate points over; vector with 2 elements 

  rng5 – B axis range to generate points over; vector with 2 elements 

  longTool – estimated tool length when using long tool mount; scalar > 0 

  shortTool – estimated tool length when using short tool mount; scalar > 0 

  speed – maximum speed for each axis; in the order [X,Y,Z,W,B] 

Outputs: Identification set and validation set data files 

Require Functions: ForKinPAMA.m, nearNeighbor.m, niederreiter2_dataset.m, writegcode.m 

Function Description: This code generates two sets of quasi-random points, does a cursory 

collision check, sorts them, and writes the points to a file. It also outputs (to the command 

window) an approximate number of minutes required to measure each of these sets. This is 

written as a script. All data entry must be done in the code itself in the section titled “SETABLE 

VALUES”. 

Changes Necessary for Other Machines: The forward kinematics call and various static 

parameters based on the PAMA machine used in collision detection would need to be changed 

as well as the two different Z ranges used based on the B axis orientation. 
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ForKinListPama.m 

Inputs: cmm – list of joint commands; matrix: each row is in the order [X,Y,Z,W,B] 

  tool – tool length used for nominal position calculations; scalar > 0 

Outputs: nomMeas – nominal kinematic positions; matrix each row in the nominal position of 

           the corresponding row of cmm in the form of [X,Y,Z,1] 

Require Functions: ForKinPAMA.m 

Function Description: This function calculates the nominal kinematic position for a given set of 

joint commands. This differs from ForKinPAMA.m in that it calculates positions for a sequence 

of commands, includes the tool length, and only returns the linear position as opposed to the 

full transformation matrix. 

Changes Necessary for Other Machines: Change the call for ForKinPAMA.m to a different 

nominal kinematic function for the new machine. 

 

ForKinPama.m 

Inputs: q – single set of joint commands; vector in the order [X,Y,Z,W,B] 

Outputs: Fn – nominal kinematic transformation matrix excluding tool length; matrix, 4x4 

Require Functions: N/A 

Function Description: This function calculates the nominal kinematic transformation matrix of 

the PAMA machine for a given set of joint commands. This code is formatted as a function and 

can be called from other functions. 

Changes Necessary for Other Machines: Kinematics need to be changed to match new 

machine. 

 

ModelInput.m 

Inputs: Measurement.ID.Cmm – joint commands for the identification set; matrix: each row is a 

      set of commands [X,Y,Z,W,B] 

 Measurement.ID.Meas – measurements for the identification set; 3D matrix: each page 

      uses a different tool length, each row is a set of measurements 



42 

 

 

      [X,Y,Z] 

 Measurement.Base.Trans – nominal transformation from measurement frame to 

machine 

          base frame; matrix: 4x4 typically identity 

   Measurement.Val.Cmm – joint commands for the validation set; matrix: each row is a 

       set of commands [X,Y,Z,W,B] 

 Measurement.Val.Meas – measurements for the validation set; matrix: each row is a 

set 

       of measurements [X,Y,Z] 

 Measurement.ID.MeasStd – measurement standard deviation matrix; matrix: each 

           column corresponds to the measurement standard 

deviations 

           for the corresponding row in the identification commands 

in 

           the form [X1;Y1;Z1;X2;Y2;Z2;…(repeated for each tool 

           used)] 

 Robot.Joint(i).JointLimits – joint limits for the ith joint; vector with 2 elements 

 Robot.Joint(i).CmmStd – command standard deviation for the ith joint; scalar 

Outputs: Robot – stores all machine dependent values; structure 

    Measurement – stores all measurement dependent values; structure 

Require Functions: ModelMinimization.m 

Function Description: This function is the data entry point for the VEC modeling process. Once 

all values are populated and correct, run this script to do the modeling. If you would like to 

model without using a validation set, set Measurement.Val.Cmm to Measurement.ID.Cmm and 

Measurement.Val.Meas to Measurement.ID.Meas(:,:,2) as leaving the validation fields blank 

can cause the code to terminate with error. 

Changes Necessary for Other Machines: Change the axis information under “Robot Structure” 

to match the new machine. 

 

ModelMinimization.m 
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Inputs: Robot – stores all machine dependent values; structure 

  Measurement – stores all measurement dependent values; structure 

Outputs: Robot – stores all machine dependent values; structure 

    Measurement – stores all measurement dependent values; structure 

Require Functions: ModelResidual.m 

Function Description: This function is where most of the back end calculation for the model 

fitting process takes place. It identifies the error model parameters and calculates the model 

residuals. This code is formatted as a function and can be called from other functions. 

Changes Necessary for Other Machines: Edit “Extra Data” and “Preprocessing” sections to line 

up with the new machine configuration. If the number of joints changed, up_cmm (line 80), 

up_meas (line 81), low_cmm (line 85), and low_meas (line 86) would have to change their 

reference ranges accordingly as well as the references ranges of x used to calculate upper (line 

97), lower (line 100), and F_resid (line 105). 

 

ModelResidual.m 

Inputs: Robot – stores all machine dependent values; structure 

  Measurement – stores all measurement dependent values; structure 

  cmm – set of joint commands; vector in the order [X,Y,Z,W,B] 

 meas – set of measurements at the given joint commands; vector in the form 

 [X1,Y1,Z1,X2,Y2,Z2,…(repeated for each tool used)] 

 Para – list of model parameters; vector with the first 6 elements corresponding to the 

base frame error, the last 3*(number of tools) corresponding to the tool length 

error, and the rest corresponding to joint error 

Outputs: resid – residual error between the VEC model and the nominal position; vector in the 

   form [X1;Y1;Z1;X2;Y2;Z2;…(repeated for each tool used)] 

Require Functions: Cheby.m 

Function Description: This function calculates the residual between the VEC model and the 

nominal position for each tool length used. This code is formatted as a function and can be 

called from other functions. 
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Changes Necessary for Other Machines: Edit the “Forward Kinematics” section to line up with 

the new machine configuration. 

 

nearNeighbor.m 

Inputs: cmm – list of joint commands; matrix: each row is a set of commands [X,Y,Z,W,B] 

Outputs: CMM – sorted list of joint commands; matrix: each row is a set of commands 

   [X,Y,Z,W,B] 

Require Functions: N/A 

Function Description: This function does a nearest neighbor sorting of sets of joint commands 

in order to reduce the required measurement time. This code is formatted as a function and 

can be called from other functions. 

Changes Necessary for Other Machines: For machines with a different number of joints, the 

indices in line 11 need to be changed. 

 

niederreiter2_dataset.m 

Inputs: m – dimension of the space to generate points in (e.g. number of joints); string 

        representing integer > 0 (e.g. ‘1’) 

  n – number of points to generate; string representing integer > 0 

  skip – number of initial values to skip (acts as a seed); string representing integer > 0 

Outputs: r – set of generated data points; matrix: mxn 

Require Functions: N/A 

Function Description: This function generates sets of quasi-random points which are used as 

identification or validation sets. The points that it outputs are between 0 and 1, so they must be 

scaled to the appropriate joint ranges. This code is formatted as a function and can be called 

from other functions. 

Changes Necessary for Other Machines: N/A 

 

REPEATABILITY_NEW.m 

Inputs: RP – set of repeatability measurements; matrix: each row represents a measurement in 
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          the form [X,Y,Z] 

 p – number of different measurement locations used; integer > 0 

 c – number of measurements taken at each location; integer > 0 

Outputs: N/A 

Require Functions: N/A 

Function Description: This function calculates the repeatability of a set of measurements and 

generates a figure of the repeatability measurements. It is important that each measurement 

location in visited the same number of times and that the product of c and p is equal to the 

number of rows in RP. If this is not true, the code will give false results. 

Changes Necessary for Other Machines: N/A 

SeporateTables.m 

Inputs: Robot – stores all machine dependent values; structure 

Outputs: Table – list of generated tables; matrix: each column is a table, each row is a point in 

    that table. Table order follows joint order in Robot. 

Require Functions: N/A 

Function Description: This function generates 25 different compensation table files (from each 

axes to each axis). These files are named TAB0.INI through TAB24.INI in accordance with the 

files set up by PAMA. Each table contains 1000 points, but this can be changed by changing the 

Num_Pts variable on line 3 (Note that all tables must have the same number of points in this 

code). While this code generates both INI files and a matrix output, the matrix is only necessary 

for troubleshooting (i.e. as an input to CheckComp.m). This code is formatted as a function and 

can be called from other functions, but it is currently not directly implemented in 

ModelInput.m. 

Changes Necessary for Other Machines: This code currently generates 25 tables, so if the 

number of axes change, the number of loop iterations (in line 9) must also change. The file 

names (constructed on lines 10 through 14) may also need to change when implemented on 

other machines. On other machines, the variables AXES (line 6) and AX (line 7) should line up 

with the controller names for each axis (in the order used in Robot). This table format is 

specifically designed for the Siemens 840D controller and may not work on machines with other 

controllers. 

 

SortID.m 
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Inputs: Mcmm – list of identification set joint commands; matrix: each row is a set of 

commands 

    [X,Y,Z,W,B] 

  ShortTool – tool length of the short tool; scalar >0 

 LongTool – tool length of the long tool; scalar >0 

 ID1 – set of identification measurements generated with the short tool; matrix: each 

row 

is a set of measurements [X,Y,Z] (does not need to match order of Mcmm) 

 ID2 – set of identification measurements generated with the short tool; matrix: each 

row 

is a set of measurements [X,Y,Z] (does not need to match order of Mcmm) 

Outputs: CMM – sorted list of identification set joint commands; matrix: each row is a set of 

     commands [X,Y,Z,W,B] 

    Short – sorted set of identification measurements generated with the short tool; 

matrix: 

                 each row is a set of measurement [X,Y,Z] corresponding to the order of CMM 

    Long – sorted set of identification measurements generated with the long tool; 

matrix: 

     each row is a set of measurement [X,Y,Z] corresponding to the order of CMM 

Require Functions: ForKinListPAMA.m 

Function Description: This function lines up the data between both identification measurement 

sets and the identification joint commands. This is necessary because many times in the 

measurement process extra measurements will be taken or measurement locations will be 

skipped. To line up the data, measurements are compared to the nominally commanded 

position with a tolerance of 5 (typically mm but will match whatever units are being used. If this 

tolerance is too broad or tight, it can be changed in lines 17 and 22. To use this code, the input 

variables names can be changed to match the data, but it is generally easier to name the raw 

data to match the inputs. 

Changes Necessary for Other Machines: Change the calls for ForKinListPAMA.m to a different 

nominal kinematic function for the new machine. 
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SortVAL.m 

Inputs: Vcmm – list of validation set joint commands; matrix: each row is a set of commands 

    [X,Y,Z,W,B] 

 LongTool – tool length of the long tool; scalar >0 

 V1 – set of validation measurements generated with the long tool; matrix: each row is a 

          set of measurements [X,Y,Z] (does not need to match order of Vcmm) 

Outputs: VCMM – sorted list of validation set joint commands; matrix: each row is a set of 

        commands [X,Y,Z,W,B] 

     vresid – set of nominal residuals for each validation point; vector: each row 

      corresponds to the joint command in the same row of VCMM 

    Vdata – sorted set of validation measurements generated with the long tool; matrix: 

      each row is a set of measurement [X,Y,Z] corresponding to the order of CMM 

Require Functions: ForKinListPAMA.m 

Function Description: Functions the same as SortID.m except it only takes in one set of 

measurements and also outputs a set of nominal residuals for that data set. 

Changes Necessary for Other Machines: Change the call for ForKinListPAMA.m to a different 

nominal kinematic function for the new machine. 

 

ValResid.m 

Inputs: Vcomp – set of compensated validation measurements generated with the long tool; 

     matrix: each row is a set of measurements [X,Y,Z] (Must be sorted to match 

     Measurement.Val.Cmm) 

  Robot – stores all machine dependent values; structure 

  Measurement – stores all measurement dependent values; structure 

Outputs: vresidc – set of residuals between compensated measurements and nominal 

positions; 

       vector: each row corresponds to the joint command in the same row of 

       Measurement.Val.Cmm 
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Require Functions: ModelResidual.m 

Function Description: This function calculates the residual of the compensated measurements 

and generates plots with the nominal, modeled, and compensated validation set residuals. 

Changes Necessary for Other Machines: N/A 

 

writegcode.m 

Inputs: q – list of joint commands; matrix: each row is a set of commands [X,Y,Z,W,B] 

 filename – name of .mpf file to write commands to; string ending with “.mpf” 

dwell – Boolean vector to determine if the machine should stop at the corresponding 

point; vector 1 if the machine should stop at the corresponding row of q and 0 if 

the machine should not stop 

Outputs: N/A 

Require Functions: N/A 

Function Description: This function generates a set of gcode to move through the specified 

sequence of joint command. At each joint location the machine can wait for 7 seconds (i.e. to 

take measurements) or move directly to the next location (i.e. for transition points). 

Changes Necessary for Other Machines: Axis commands used in line 34 will need to be 

changed to match with the new machine’s controller. 

 

4.1.6 Features and Attributes 

The system used for machine tool error measurement, modeling and compensation has the 

following attributes: 

1. Measures absolute error rather than error relative to an arbitrary axis starting position. 

2. Measures error simultaneously for all axes, throughout the workspace rather than each 

axis independently with other axes held constant. This results in an error model that is 

not overfit to a specific location in the workspace. 

3. Detailed compensation tables of 1000 points each are used including tables 

compensating for both linear error within an axis and cross-axis error dependence 

between all axis combinations. 

4. Methodology is easily adaptable to any laser tracker and active target system which 

allows the target to be mounted in the spindle of the machine and the absolute position 
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of the target relative to the tracker measured throughout the workspace of the machine 

with similar or better accuracy to that of the API Radian and API active target. 

5. Pseudorandom point sets used for testing are clustered into quadrants and the B-axis 

motion is moved between quadrants in a designed direction to avoid cord-wrap 

problems. 

6. Software was customized for a 5-axis BXYZW style kinematic structure, but the general 

methodology is applicable to any kinematic structure with the proper code 

modifications. 

4.1.7 Modes of Operation 

This technology can be used in new machine tool asset calibration as well as recalibration of the 
degraded machine tool assets. Laser tracker mount and calibration is need for the hardware 
preparation. Then, laser tracker measurement tracking performs with the support from operator. 
With the laser tracker measured data, software generates 25x1000 point compensation point 
and applied to the controller by manufacturing engineer or operator. 
 

  Thermal error measurement 

Another main difficulty in machine tool calibration is the fact that quasi-static effects are the 

dominant contributors to volumetric errors observed in the workspace. As, a result, thermal and 

flexural deformations combine with manufacturing and assembly errors of machine elements 

and through complex kinematic transformations reveal themselves in the volumetric errors of a 

machine. Thus, the first problem to be addressed is one of modeling how the dimensional and 

assembly errors of a machines elements kinematically compose the volumetric errors. This report 

gives a systematic and mechanized process for composing error models. While the modeling 

approach is not new, extensions are provided to include rotary joints and modeling procedures 

are updated to be able to exploit the speed and versatility of modern metrology instrumentation, 

especially laser trackers.  

4.2.1 System overview 

Kinematic error models for multi-axis machine tools will typically involve several unknown 

(component error) parameters. A large number of volumetric error observations must be made 

to robustly estimate these errors. The ease of use and speed of laser trackers open up the 

possibility of making a large number of volumetric error measurements across a machine tool’s 

workspace to estimate the unknown parameters its kinematic error model. The procedure for 

using laser tracker information to identify the unknown parameters (component errors) of the 

kinematic error model is developed, tested, and shown to be effective in characterizing the 

observed volumetric errors.    

Thermal effects cause a machine tool’s volumetric error to change during operation. Depending 

to factory environment, the severity of the work-cycle, and the thermal susceptibility of 

machine’s design, these changes can be as large, if not larger, than the errors attributed to the 
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dimensional and assembly tolerances of the machine.  Notwithstanding the speed and 

convenience of laser trackers, the sheer number of observations needed for repeatedly 

estimating kinematic model error parameters to track the thermal drift of a machine by 

periodically rebuilding the error model make it infeasible to use the same measurement and 

identification strategies used for machine calibration. First, this causes a severe reduction in the 

productive time of the machine tool when done at reasonable intervals to have a meaningful 

compensatory effect. Second, the transient nature of a machine’s thermal state makes estimates 

of model parameters based on observations an over long interval of time questionable.  

Therefore, the concept of optimal error observers has been introduced. Given a fixed number of 

observations (much smaller than that needed for calibration), the optimal error observer, based 

on the structure of the kinematic error model, locates these observations in the machine’s 

workspace so as to produce the best-conditioned/most informative relational matrix for the 

identification of the error model’s unknown parameters. Limiting the number of observations 

needed for these estimates shortens the length of the non-productive machine time interval 

needed for measurements, making it feasible to periodically update the error model while the 

machine is in operation. 

What are quasi-static machine tool errors? 

About 70-80 percent of the inaccuracy of a machine tool is caused by quasi-static errors. As their 

name suggest, the quasi-static errors are slowly varying errors. Quasi-static error sources include 

assembly errors, flexural errors (due to self-weight of moving parts and the work piece), and 

thermal deformations (due to heat generation at the spindle, drives, guideways and cutting tools 

as well as ambient temperature variations, all of which gradually generate the geometric 

inaccuracies in the underlying kinematic structure of the machine). Compared with dynamic 

errors (e.g., servo-tracking errors; dynamic response to cutting forces), quasi-static errors vary 

slowly during the operation of the machine. Due to being constrained, small thermal changes 

cause structural members of the machine to undergo deformation that, in turn, are magnified by 

the Abbe effect across other structural members. Therefore, depending on the mode of 

operation and the level of control of the factory environment, thermal (drift) errors can become 

the dominant component of quasi-static errors, especially for larger machines with variable 

operation cycles. For example, on a shop floor with controlled temperature and the machining 

operating continuously on a repeating work cycle, a thermal steady state is reached and thermal 

drift of the machine is minimal. However, for a machine operating in a flexible (small-batch/one-

off) production setting, without shop floor temperature controls and large diurnal temperature 

swings, the quasi-static errors of the machine may be very large. 

4.2.2 System Architecture 

The flowchart in Figure 30 shows methodology developed along with the software modules 

(described later) developed to support its use. The left column of the flow-chart is concerned 

with the development of the kinematic error model. The right column of the chart defines the 
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steps used to construct the error observer for updating the error model during operation. The 

two steps at the bottom of the chart are the parameter estimation process. 

Kinematic error modelling, for a five-axis machine  

Model construction is shown below. 

 

Figure 30 Flowchart to operate the system 

 

This section describes the modeling approach, which is shown in the left hand side in Figure 30. 

As shown in Figure 31, the ideal kinematic of the machine from the table to the spindle can be 

expressed by the series of homogeneous transformation matrices (HTMs). This series consists of 

alternating joint and shape transformations. The machine has four prismatic joints, X, Y, Z and W 

axis with travels of 4, 2.5, 2.2 and 0.8 m respectively and a rotary joint, B axis that allows the table 
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to rotate about the Y direction by 360 degrees. The Z and W axes are redundant axes. The error 

model is obtained by introducing perturbations to the ideal kinematics of all the elements of the 

machine’s kinematic chain, from the table to the spindle. Expressed by the series of 

homogeneous transformation matrices (HTMs), 

 

[𝑒
1
] = 𝑇0(𝑅 − 𝐻) [𝑟𝑡

1
] = 𝑇0∆𝐻 [𝑟𝑡

1
], (37) 

 

where 𝑒 = [𝑒𝑥 𝑒𝑦 𝑒𝑧]
𝑇

 is the error vector, 𝐻 = Φ𝐵𝑇1Φ𝑥𝑇2Φ𝑧𝑇3Φ𝑦𝑇4Φ𝑤𝑇5 and 𝑅 = (Φ𝐵 +

ΔΦ𝐵)(𝑇1 + Δ𝑇1)… (𝑇5 + Δ𝑇5) are the ideal and perturbed forward kinematics, 𝑟𝑡 is the position 
of the target in the spindle frame, 𝑇0 is a fitted HTM that depicts the displacements between the 
nominal and actual measurement frame and ∆𝐻 is the error kinematics obtained by eliminating 
the higher order terms in the kinematic chain.  
 

 

Figure 31 Schematic of a 5-axis machine along with kinematic model showing the shape and 
joint transformation 

There are three types of transformation for a machine tool. The constant (not position 
dependent) components of errors are introduced into the shape transformations while the 
position dependent components are introduced into the joint transformations. The error 
parameters in three types of transformations are introduced and explained as follow. 

1. Shape transformations, 𝑇𝑖(𝛼𝑖, 𝛽𝑖, 𝛾𝑖, Δ𝑥𝑖 , Δ𝑦𝑖 , Δ𝑧𝑖), 𝑖 = 1~5 
For an inaccurate shape transformation as shown in Figure 32, Δ𝑥𝑖, Δ𝑦𝑖 and Δ𝑧𝑖 depict the 
dimensional (translation) errors while 𝛼𝑖 , 𝛽𝑖 and 𝛾𝑖 capture the deflection (angular) errors (roll, 
pitch and yaw). 
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𝑇𝑖
′ = 𝑇𝑖 + ∆𝑇𝑖 = [

1 −𝛼𝑖 𝛽𝑖 𝑥𝑖 + 𝛥𝑥𝑖

𝛼𝑖 1 −𝛾𝑖 𝑦𝑖 + 𝛥𝑦𝑖

−𝛽𝑖 𝛾𝑖 1 𝑧𝑖 + 𝛥𝑧𝑖

0 0 0 1

] (38) 

 

 
Figure 32 Ideal and actual shape transformations 

2. Rotary joint transformation, B-axis, Φ𝐵 (𝛼, 𝛽, 𝛾, 𝑑𝑥, 𝑑𝑦, 𝑑𝑧) 

Figure 33 shows a rotary joint, which is commanded to an angular position 𝐵 (rotation about Y-
axis) may have positioning error, 𝛽𝐵′. Further, the rotational errors may introduce tilts of 𝛼𝐵′ 
and 𝛾𝐵′and the entire moving table may shift due to the accumulation of translation errors 𝐵′𝑑𝑥, 

𝐵′𝑑𝑦, 𝐵′𝑑𝑧, where 𝐵′ = sin (
𝐵

2
). All translational and rotational errors are modelled by Fourier 

sine series of B. For simplicity, only the first term in the Fourier series is taken. 
 𝛷𝐵

′ = 𝛷𝐵 + ∆𝛷𝐵 = 

=

[
 
 
 
 

𝑐𝑜𝑠(𝐵 + 𝛽(𝐵)) −𝛼(𝐵) 𝑠𝑖𝑛(𝐵 + 𝛽(𝐵)) 𝑑𝑥(𝐵)

𝛼(𝐵) 1 −𝛾(𝐵) 𝑑𝑦(𝐵)

− 𝑠𝑖𝑛(𝐵 + 𝛽(𝐵)) 𝛾(𝐵) 𝑐𝑜𝑠(𝐵 + 𝛽(𝐵)) 𝑑𝑧(𝐵)

0 0 0 1 ]
 
 
 
 

 
(39) 

 

 
Figure 33 Ideal and actual rotary joint transformations 
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3. Prismatic joint transformations, X-axis, Φ𝑥(𝛿𝑥,
𝑑𝛼

𝑑𝑥
,
𝑑𝛽

𝑑𝑥
,
𝑑𝛾

𝑑𝑥
), Y-axis, Φ𝑦(𝛿𝑦,

𝑑𝛼

𝑑𝑦
,
𝑑𝛽

𝑑𝑦
,
𝑑𝛾

𝑑𝑦
), Z-axis, 

Φ𝑧(𝛿𝑧,
𝑑𝛼

𝑑𝑧
,
𝑑𝛽

𝑑𝑧
,
𝑑𝛾

𝑑𝑧
) and W-axis,  Φ𝑤(𝛿𝑤,

𝑑𝛼

𝑑𝑤
,
𝑑𝛽

𝑑𝑤
,
𝑑𝛾

𝑑𝑤
) 

Similarly, the actual prismatic joint has the error in positioning along the joint and angular errors, 
which are all modelled as linear function of the joint command. For example, the positioning 

error is the x times 𝛿𝑥 and the angular errors are x times 
𝑑𝛼

𝑑𝑥
,
𝑑𝛽

𝑑𝑥
 and 

𝑑𝛾

𝑑𝑥
, respectively. The linear 

variation of angular errors with displacement along the axis necessitates the addition of squared 
terms to the straightness error. 
 
 

𝛷𝑥
′ = 𝛷𝑥 + ∆𝛷𝑥 =

[
 
 
 
 
 
 1 −𝑥

𝑑𝛼

𝑑𝑥
𝑥

𝑑𝛽

𝑑𝑥
𝑥 + 𝑥𝛿𝑥  

𝑥
𝑑𝛼

𝑑𝑥
1 −𝑥

𝑑𝛾

𝑑𝑥

𝑥2

2

𝑑𝛼

𝑑𝑥
 

−𝑥
𝑑𝛽

𝑑𝑥
𝑥

𝑑𝛾

𝑑𝑥
1 −

𝑥2

2

𝑑𝛽

𝑑𝑥
 

0 0 0 1 ]
 
 
 
 
 
 

 (40) 

 
 

 
Figure 34 Ideal and actual prismatic joint transformations 

 
The 52 introduced error sources/parameters are assumed to be small. Therefore, an error model 
in the set of parameters and can be expressed by the difference between the ideal and actual 
forward kinematics. By ignoring the higher order terms and separating the contribution of each 
error parameter on the error vector, the linear error model can be written as  

𝑒𝑖 = ℳ𝑖
′𝑝⃑′ where 𝑒𝑖 = [𝑒𝑥,𝑖 𝑒𝑦,𝑖 𝑒𝑧,𝑖]

𝑇
 contains the components of the errors observed at that 

point, 𝑝⃑′ contains all 52 error parameters and ℳ′ is a matrix with three rows and 52 columns, 
where each term being a function of known machine constants and commanded positions.  
As would be expected, the influence of some parameters on the observed volumetric error 
components will be inseparable from, or linearly dependent on, each other when only changes 
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in the commanded position of the tool are introduced. For example, Δ𝑥𝑖 and 𝛽𝑖‘s contributions 
to the volumetric error components at a point are inseparable, irrespective of its location in the 
machine’s workspace. They must therefore be identified as a group. Further, other parameters 

such as 𝛼4,𝛼5 and 
𝑑𝛼

𝑑𝑤
 have no influence on the volumetric error when the tool reference point 

lies along the axis of the spindle. In all, our analysis has found that with such groupings and 
eliminations, there are 32 identifiable error parameters. After all these redundant parameters 
are eliminated or grouped, we have  
 

𝑒𝑖 = ℳ𝑖𝑝⃑ (41) 

 
where ℳ𝑖 ∈ ℝ3×32 is a sub-matrix of ℳ𝑖

′,  

𝑝⃑ = [𝛼1, 𝛼2 + 𝛼3, 𝛽1, 𝛽2, , 𝛽3 + 𝛽4, 𝛾1 + 𝛾2, 𝛾4, −𝛽5𝑟𝑡 + ∑ Δ𝑥𝑖
5
𝑖=1 , −𝛾5𝑟𝑡 +

∑ Δ𝑦𝑖
5
𝑖=1 , ∑ Δ𝑧𝑖

5
𝑖=1 ,

𝑑𝛼

𝑑𝑥
,
𝑑𝛽

𝑑𝑥
,
𝑑𝛾

𝑑𝑥
, 𝛿𝑥,

𝑑𝛼

𝑑𝑦
,
𝑑𝛽

𝑑𝑦
,
𝑑𝛾

𝑑𝑦
, 𝛿𝑦,

𝑑𝛼

𝑑𝑧
,
𝑑𝛽

𝑑𝑧
,
𝑑𝛾

𝑑𝑧
, 𝛿𝑧,

𝑑𝛽

𝑑𝑤
,
𝑑𝛾

𝑑𝑤
, 𝛿𝑤, 𝛼, 𝛽, 𝛾, 𝑑𝑥, 𝑑𝑦, 𝑑𝑧]

𝑇

∈

ℝ32 and 𝑟𝑡 is the tool length.  
 

4.2.3 System development  

4.2.3.1 Estimation of the error model parameters 

The model, developed in the previous section, assembles all the error sources in the kinematic 

chain to obtain their influence on the volumetric error components of the machine. There are a 

total of 52 error sources or parameters (five shape transformations, each with six error 

parameters, four joint transformations for linear axes, each with four error parameters, and one 

for a rotary axis with six parameters) that are composed into an expression for the volumetric 

error components observed in the machines workspace. To use this model for compensating the 

volumetric errors, it is necessary to obtain values for these parameters.  

Estimation of the parameters in the error model is done by observing the volumetric errors of 

the machine at different points in its workspace with a laser tracker, as shown in Figure 35. 

However, to do so, the frame in which the laser tracker makes measurements, 𝑇0 must be first 

estimated before the parameters of the error model can be obtained. This is done in the following 

two steps.  
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Figure 35 Schematic depiction of measurement of volumetric error components of the machine 
using a laser tracker. The relationship between the measurement frame and the table frame 
(from the kinematic model of the machine) is captured by the homogeneous transformation 

matrix 𝑇0. 

 

1. Find 𝑇0 , the best-fit measurement frame 

Assume the machine to be ideal and identify the best values for 𝑇0 to minimize the discrepancy 

between the laser tracker observations of position and the commanded position. Since 𝑇0 is a 

rigid transformation, this step accounts any location and alignment errors between the machine 

and the laser tracker. In addition, this step will also reduce the effects of any error sources that 

produce a rigid displacement of the entire machines workspace. The residual errors that result 

from this process (of aligning measuring frame with the machines coordinates) are referred to as 

the nominal errors of the machine.  

To identify 𝑇0, assume ideal kinematics for the machine defined in equation (42),  

 
𝑟𝑡0 = 𝑇0Φ𝐵𝑇1Φ𝑥𝑇2Φ𝑧𝑇3Φ𝑦𝑇4Φ𝑤𝑇5 = 𝑇0𝐻𝑟𝑡, (42) 

where 𝑇0 has rigid body translations and small angle rotations as parameters to be identified.  

 

𝑇0 = [

1 −𝛼0 𝛽0 𝑥0

𝛼0 1 −𝛾0 𝑦0

−𝛽0 𝛾0 1 𝑧0

0 0 0 1

] (43) 
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Further, 𝑟𝑡 is the position of the target in the spindle frame and 𝑟𝑡0 is its image in the 

measurement frame. For different joint commands (or measurement points), the kinematic 

transmission of the machine, 𝐻 will vary. For the ith measurement point, the error vector, 𝑒𝑖 

between the forward kinematic transmission and the measurement recorded by the laser tracker 

can be expressed as  

 

𝑒𝑖 = 𝑇0𝐻𝑖𝑟𝑡 − 𝑞⃑𝑖 , (44) 

where 𝑞⃑𝑖 is the measurement recorded by the tracker.  

The best-fit homogeneous transformation, 𝑇0 to the measurement frame can be obtained by 

minimizing the sum-of-squares of the discrepancy between the ideal machine’s commanded 

positions and the measurements made by the tracker, 

 

min
𝑇0

∑‖𝑇0𝐻𝑖𝑟𝑡 − 𝑞⃑𝑖‖
2

𝑛

𝑖=1

 (45) 

 
2. Identify the parameters of the error model from the nominal errors observed in the 

machine’s workspace 
The error sources in the kinematic chain of the machine cause the workspace of the machine to 

dilate/contract, shear and bend. These effects are encoded errors measured in the point-cloud 

of error measurements made by the laser tracker. In this step, least-square is used to identify the 

parameters. Consider a typical linear identification/design of experiments problem with n design 

points where we have a random process: 

 

𝑒 = 𝑀(𝑗1, … 𝑗𝑛)𝑝⃑ + 𝑁⃑⃑⃑ (46) 

where 𝑒 ∈ ℝ𝑛represents a vector of n observable values that is related to 𝑝⃑ ∈ ℝ𝑘, a set of k 

unknown parameters is the vector consisting of all undetermined parameters, 𝑝1, … 𝑝𝑘 (whose 

values are to be estimated) by the design matrix, 𝑀(𝑗1, … 𝑗𝑛) ∈ ℝ𝑛×𝑘, whose row vectors are 

functions of 𝑗1, … 𝑗𝑛, sets of variables that can be independently controlled, 𝑁⃑⃑⃑ ∈ ℝ𝑛 represents 

the observation noise vector with elements being random errors, normally distributed, with a 

mean of 0 and a variance of 𝜎2. 

In many parameter identification/design of experiments situations, one has latitude in selecting 

the location of the observation/design points. Thus, the problem of selecting appropriate 

locations and number of design points in the space of 𝑗𝑖 to get robust estimates of the parameter 

vector, 𝑝⃑ is the design-of-experiments problem or the problem of designing an observer for the 

model given in equation 47.  
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The least-squares unbiased estimator of 𝑝⃑, 𝑝̂ minimizes the sum of square errors, ‖𝑒 − 𝑀𝑝⃑‖2. 𝑝̂ 

is also the best linear unbiased estimator (BLUE), which can be obtained by,  

 

𝑝̂ = (𝑀𝑇𝑀)−1𝑀𝑇𝑒 (47) 

4.2.3.2 Experimental Verification of Error Model and Parameter Estimation  

Data collection 

To identify the kinematic error model parameters, measurements of the machine tool are taken. 

These measurements are collected over the entire 3D space using a Laser Tracker and Active 

Target system (Figure 36(a)) to ensure that all axis-dependent machine tool geometric errors are 

captured. The Laser Tracker used in this test is the API Radian which has a static measurement 

accuracy of +/- 10 μm or 5 ppm (2σ) according to the specifications provided by API. From this 

and the tracker’s position on the machine, the largest measurement standard deviation (σ) value 

over the measured range was calculated to be 8.9 μm. In order to ensure that the Laser Tracker 

was thermally isolated from the machine tool, a plastic Isolation Block was placed between the 

Laser Tracker base and the machine tool.  

Before measurements are taken, a measurement frame is identified. With the Laser Tracker 

attached to the machine tool bed and the Active Target attached to the machine tool spindle, as 

shown in Figure 36(a), the B-Axis is rotated with the other axes stationary in order to generate a 

circle of points. The normal vector of this circle is used as the vertical (Y-Axis) of the measurement 

frame. Next, the B-Axis is re-oriented to its 0° position and three points are measured as the 

machine moves along its X-Axis. The best fit line to these points is used as the X-Axis direction of 

the measurement frame. A right-handed frame is established from these two axes. This frame is 

then transformed into the negative Y-Axis direction by the Y-Axis encoder value of the machine 

tool in order to account for the Y position of the machine tool spindle during the measurement 

frame identification. 

The machine tool repeatability, which establishes the maximum possible accuracy for a perfectly 

compensated machine tool, was calculated next. To determine the machine tool’s repeatability, 

eight quasi-random points from the machine tool’s working joint space were measured ten times 

each. Each cycle of the eight points was measured in a different randomized order to 

approximate arbitrary approach directions. The error of each measurement is  

 

𝑒𝑖,𝑗 = √(𝑥𝑖,𝑗 − 𝑥̅𝑖)
2
+ (𝑦𝑖,𝑗 − 𝑦̅𝑖)

2
+ (𝑧𝑖,𝑗 − 𝑧𝑖̅)

2
 (48) 

where 𝑒𝑖,𝑗 is the error of the jth measurement of the ith point, [𝑥𝑖,𝑗, 𝑦𝑖,𝑗, 𝑧𝑖,𝑗] is the jth measurement 

of the ith point, and  [𝑥̅𝑖 , 𝑦̅𝑖, 𝑧𝑖̅] is the average measurement of the ith point. From the 

measurements taken of the machine, the largest error was 0.0217 mm, which is used as the 

machine tool’s repeatability. It should be noted that this repeatability value is only 2.4 times the 
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measurement standard deviation meaning that a large portion of this value is may be due to the 

accuracy level of the laser tracker as opposed to the machine itself. Despite this fact, this 

repeatability still corresponds to the highest potential measured accuracy of the machine if it was 

perfectly compensated. 

The measurement locations used for model identification and testing were selected next. For the 

identification set, 290 quasi-random points were selected throughout the machine tool’s joint 

space, and an additional 50 quasi-random points were generated as a testing set. The number of 

points selected for identification and testing was selected through past experience with similar 

sized machine tools. This number has the necessary richness to appropriately identify the 

geometric errors of the machine tool while minimizing the machine tool’s down time. The joint 

ranges used to generate these points are shown below in Table 1, and the distributions of the 

points are shown in Figure 36(b).  

Table 10 Minimum and maximum commands used for modeling and testing. 

Axis Minimum Command Maximum Command 

B 0° 360° 

X -1250 mm 1250 mm 

Z 900 mm 2200 mm 

Y 350 mm 2500 mm 

W -800 mm -200 mm 

 

Figure 36 Machine tool work cell and table base frame; (b) Positions of identification and 
testing points inside working envelop, given in machine tool base frame. 
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Using the Laser Tracker and Active Target system, the 290 point identification set was measured 

twice. In each measurement set a different length mount was used to attach the active target to 

the spindle as shown in Figure 36(a). Because the rotation of the spindle does not need to be 

modeled, these two mounts (Figure 37(a)) allow for the spindle orientation to be determined for 

each point by finding the vector between the measurement sets.  

Because the same axis commands are used when taking both sets of identification points, it is 

possible to use the two sets of measurements to examine the potential existence of thermal drift 

in the measurement setup. For each point in the identification set, the distance between the two 

measurements of that point is ideally equal to the tool length difference of the two Active Target 

mounts (within machine tool repeatability). Therefore, if the distance between measurements is 

larger than the repeatability (0.0217 mm), then some shift must have occurred during the time 

that the system was measured. The distances between the measurements from each set (with 

the tool length offset removed) are shown in Figure 37(b). The distance between corresponding 

points ranges from -0.13 to 0.11 mm. Since this value is approximately six times the measured 

repeatability value, there is evidence that some sort of drift occurred during the measurement 

process. Furthermore since the air temperature changed by 3.7°C during the measurement 

process, thermal effects is a likely source of some or all of this drift.  

 

Figure 37(a). Active Target machine tool spindle mounts; (b) Distance between short tool and 

long tool measurements. 

Best-fit measurement frame 

The procedure described previously was used on the data collected in both the identification and 

testing data sets. Table 11 shows the estimated errors between the nominal measurement frame 

and the machine’s reference. Also shown in the table is the mean magnitude of the residual error 

vectors at the measurement points. For identification purpose, two sets of measurement were 

taken using different lengths of tool. After that, the identified parameters were used for modeling 

the testing sets.  
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Table 11 Best measuring frames of each measuring set. 

Set Short Tool Long Tool Test 1 Test 2 

x0(mm) 0.00845 0.0122 0.00715 0.0111 

y0(mm) 0.351 0.304 0.293 0.298 

z0(mm) -0.0147 -0.0124 0.0095 0.0116 

α0(rad) -6.21E-06 3.68E-05 5.78E-05 6.68E-05 

β0(rad) -2.13E-05 -1.85E-05 -2.43E-05 -2.35E-05 

γ0(rad) 1.05E-05 2.41E-05 3.52E-06 5.05E-06 

Res(mm) 0.4214 0.3175 0.2783 0.2745 

 

Parameter identification  

 The results of parameter identification are shown in Table 12. The data for the two different 

tools (short, 312.035mm, and long, 435.185mm) were analyzed separately to identify the error 

parameters of the two identification sets. From Table 12, the high correlation between the 

parameters identified in the two experiments is apparent. The deviations seen are due to the 

temperature changes between the two experiments and the uncertainty in the assembly of the 

target on the tool. Figure 38(a) shows the distributions of the residual errors. The statistical 

analysis of the results is shown in Table 13.  Compared with the residual errors obtained from the 

frame alignment process, the error model reduces not only the mean but also the maximum 

(which characterizes the worst-case uncertainty of the machine/model) errors by 90% and 82% 

respectively. 
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Figure 38 The magnitudes of error residuals on two identification sets (290 points in each); (b) 
the magnitudes of error residuals on two testing sets (48 points in each). 

 

Table 12 Values identified for the parameters of the error model. 

Unit: mm Unit: rad Unit: rad/mm 

Paramet

er 
Short Long 

Paramet

er 
Short Long 

Paramet

er 
Short Long 

x1+…x5-

tlβ5 

3.62E-

02 

5.92E-

02 
α1 

-2.36E-

05 

-1.96E-

05 
dα/dx 

1.55E-

08 

2.57E-

08 

y1+…y5+tl

γ5 

-4.78E-

02 

-2.35E-

02 
α2+α3 

-1.01E-

05 

-1.18E-

05 
dβ/dx 

1.13E-

09 

7.01E-

09 

z1+…z5 
-3.12E-

01 

-1.97E-

01 
β1 

-6.93E-

05 

-6.95E-

05 
dγ/dx 

-1.04E-

08 

-1.16E-

08 

dx 
1.13E-

02 

3.75E-

03 
β2 

4.16E-

05 

3.51E-

05 
dα/dy 

-1.26E-

08 

-1.80E-

08 

dy 
2.62E-

02 

2.71E-

02 
β3+β4 

5.83E-

05 

4.82E-

05 
dβ/dy 

2.57E-

08 

3.03E-

08 

dz 
-1.28E-

02 

-7.25E-

03 
γ1+γ2 

-1.85E-

04 

-1.77E-

04 
dγ/dy 

-5.54E-

09 

-1.54E-

09 

(a) (b) 
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Unit: dimensionless γ3 
9.02E-

05 

8.19E-

05 
dα/dz 

-1.68E-

08 

-1.34E-

08 

Paramet

er 
Short Long γ4 

-1.85E-

04 

-2.07E-

04 
dβ/dz 

-3.81E-

08 

-2.73E-

08 

δx 
-1.23E-

04 

-1.12E-

04 
β 

-9.57E-

07 

-9.72E-

06 
dγ/dz 

2.97E-

08 

2.78E-

08 

δy 
-1.10E-

04 

-1.09E-

04 
α 

1.15E-

06 

6.78E-

07 
dβ/dw 

2.93E-

08 

1.80E-

08 

δz 
-3.75E-

05 

-3.75E-

05 
γ 

8.03E-

06 

4.84E-

06 
dγ/dw 

-4.10E-

07 

-4.19E-

07 

δw 
-1.06E-

04 

-1.06E-

04 
      

 

Table 13 Model performance for two sets with two different tool lengths. 

Tool 

length=312.035mm 
Mean Residual % decrease Max. Residual % decrease 

Nominal 0.4214 mm N/A 0.6270 mm N/A 

Least squares 0.0277 mm 93.43% 0.1073 mm 82.88% 

Tool 

length=435.185mm 
Mean Residual % decrease Max. Residual % decrease 

Nominal 0.3175 mm N/A 0.5492 mm N/A 

Least squares 0.0307 mm 90.34% 0.0941 mm 82.86% 

 

Model testing 

With the error model parameters obtained from the identification sets, the model’s prediction 

capability is checked against two testing sets consisting of 48 previously-unseen data points, 

taken with the long tool. The results of this testing are shown in Table 14 and Figure 38(b). 

Compared with the nominal machine errors, the model can provide, approximately, a 75% 

reduction of average magnitude of errors vectors at the points in the data sets. 
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Table 14 Model performance for two testing data sets (Tool length=435.185mm). 

Testing set 1 Mean Residual % decrease Max. Residual % decrease 

Nominal 0.2783 mm N/A 0.4624 mm N/A 

Least squares 0.0590 mm 78.80% 0.1760 mm 61.94% 

Testing set 2 Mean Residual % decrease Max. Residual % decrease 

Nominal 0.2745 mm N/A 0.4546 mm N/A 

Least squares 0.0670 mm 75.59% 0.1767 mm 61.13% 

 

4.2.3.3 Summary and Conclusions for Error Modeling and Parameter Estimation 

A kinematics model for a 5-axis machine tool with a redundant linear axis has been developed. 

This model introduced 52 parameters, linked to the error kinematics of the machine-tool, which 

would need to be identified. Analysis of the model shows that only 32 of them have linearly 

independent effects on the volumetric errors in the workspace. Procedures for least-squares 

identification of the error model parameters from observations of the volumetric errors at points 

in the machine’s workspace are also developed.  

A laser tracker was used to make measurements at 290 randomly generated points in the 

machine’s workspace. These measurements were repeated with tools of two different lengths 

characterizing the behavior of the machine with long and short tools. The error model 

parameters were estimated for these two different data sets. In spite of some thermal drift on 

the machine between the experiments, the error model parameters estimated remained 

consistent in both magnitude and sign. Further, the model was able to reduce the errors at the 

observation points to about a third of their original values. The model was tested on two data 

sets of 48 observation points each. A similar model performance was observed. The proposed 

model could be used for error prediction on commanded positions. 

The average magnitude of residual error vectors in the training sets were about 30 microns. This 

is consistent with the repeatability of the machine and the fact that the thermal environment 

changed during the experiments. The modeling approach, along with the convenience of 

observing errors as a large set of randomly selected points in a machine’s workspace with a laser 

tracker can make for a very effective means of regularly updating compensation tables of 

machines.  

For better model performance, a thermally stable environment would be necessary. Additionally, 

tracking the thermal drift of the machine with time would yield better model performance. For 

this, a quicker (consisting of fewer and more strategically-chosen points) and more convenient 
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data-collection cycle that can be easily embedded into the normal operation of the machine is 

needed.  

4.2.3.4 Design of Optimal Error Observers of Tracking of Thermal Errors  

The construction of the volumetric error model is a commonly-used approach of calibration for 

a machine tool. As we have seen the preceding discussion, depending on the size, design and 

complexity of the machine, a volumetric error model is built with several unknown error 

parameters whose values must be estimated before the model is used for compensation. We 

have also seen that this estimation is accomplished by making observations of volumetric errors 

in the machine’s workspace and using a least-squares fitting procedure. To ensure the 

observations carry sufficient information to make accurate estimates of the values of the 

unknown parameters, a large number of observations, (quasi-) randomly distributed across the 

workspace, are required (in the previous section we used about 300 observations). This enforced 

redundancy in the observations leads to long measurement times, even with automated devices 

like laser trackers. As a result, it limits the use of such a volumetric error calibration approaches 

to static, base-line machine-tool calibrations, not addressing the changes that may occur as a 

result of thermal variations during the operation of the machine. In this section we develop an 

approach to reduce the number of observations needed for parameter estimations, while still 

attempting to get robust parameter estimates. 

Observer Design for Linear Systems 

Data-driven approaches require large amounts of observations during the operation of the 

machine. Lengthy measurement processes are not possible because of the transient nature of a 

machine’s thermal state. Therefore, even in the support of using a laser tracker, the concept of 

optimal design of observations is important to identify most informative observations and 

shorten the length of the time interval for measurements. 

As the Gauss-Markov theorem states, the variance associated with BLUE, given by the variance-

covariance matrix is minimized for the design characterized by 𝑀, 

 

𝑉𝑎𝑟[𝑝̂|𝑀] = 𝜎2(𝑀𝑇𝑀)−1 (49) 

where 𝑀𝑇𝑀 ∈ ℝ𝑘×𝑘 is called the information matrix. 

The variance-covariance matrix captures the uncertainty in the correlation between the elements 

of the estimator, 𝑝̂. It must be noted that 𝜎2 is the variance of the residual, a property of the 

random process. So, the uncertainty in the values of the parameter vector and the predictions 

they make can be seen to be completely dependent on 𝑀. As a result of the above 

considerations, a number of optimality criteria associated with different matrix norms of the 

design matrix, 𝑀 have been proposed in both the design on experiments (DOE) and the design 

of observers (for continuous/on-line estimation and compensation). For a linear regression 
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design problem with n observations and k unknown parameters to be determined (𝑛 ≥ 𝑘), the 

optimal design represents the selection of n observations that carry the largest amount of 

information and the correspondingly, the estimator has the lowest variance.  

A D-optimal design seeks to maximize information carried by the observations and quantified by 

the determinant of the information matrix. It does so by minimizing the volume of the confidence 

volumes or the uncertainty region around the estimator and its predictions. D-optimality is the 

most commonly used criterion because the target function to be minimized is simpler than the 

other criteria. Similarly, an A-optimal design seeks to minimize the average variance. The K-

optimality criterion which seeks to minimize the sensitivity of estimator to 

observation/measurement error does so by minimizing the condition number of the design 

matrix denoted by 𝜅(𝑀) which is always greater or equal to 1. It implies that error in observation 

always corrupt the estimation. The condition number can be infinity if (and only if) 𝑀 does not 

have full column rank. 𝜅(𝑀) is defined by the worst-case relative errors caused by the error in 

observations, 

 ‖Δ𝑒‖

‖𝑒‖
≤ 𝜅(𝑀)

‖Δ𝑝⃑‖

‖𝑝⃑‖
, 𝑤ℎ𝑒𝑟𝑒 

(50) 

 𝜅(𝑀) =
𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
, 

(51) 

where 𝑒 is the accurate observation, Δ𝑒 is the errors in observation, 𝑝⃑ is the correct estimation, 

Δ𝑝⃑ is the error in estimation due to Δ𝑒 and 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛 are the largest and smallest singular 

values of 𝑀 respectively. 

D, A and K-optimality criteria are all related to the eigenvalues of the information matrix. All three 

types of design problems deal with the maximization of information, quantified by surrogate 

functions of these eigenvalues. In this paper, K-optimal design is selected to reject the 

measurement noise. However, the optimal design theories produce the best locations for 

observations to identify model parameters under the assumption that the form or degree (if it is 

a polynomial) of the underlying model of the linear system is known. In many situations, the 

functions used for machine-tool error models are simplifications (typically with polynomials of 

axial displacements). Further, to keep the number of parameters manageable, they are assumed 

to be low-order polynomials. In such cases, there is always a possibility that neglected higher-

order terms may be significant. Any observer design process must take steps to alleviate the 

deleterious effects of model inadequacy.   For example, if one tries to fit a straight line model to 

a parabolic function, 𝑦 = 𝑥2 over the domain [0, 1] with four observations. The best fitting 

problem is given by, 

 
[

𝑦1

⋮
𝑦4

] = [

𝑥1

⋮
𝑥4

1
⋮
1
] [

𝑝1

𝑝2
] = 𝑀𝑝⃑, (52) 
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where 𝑥1, … 𝑥4 are the positions of the observations, 𝑦1, … 𝑦4 are the corresponding observations 

and 𝑀 is the design matrix. 

The K-optimal design problem is given by, 

 min
𝑗1…𝑗𝑛

𝜅(𝑀) ∋ 𝑗𝑖 ∈ Γ(𝑖 = 1, …𝑛), 

(53) 

Where 𝜅(𝑀) is the condition number of 𝑀 and Γ is the design space.  

In this example, Γ = [0,1], n = 4 and 𝑗𝑖 = 𝑥𝑖 for i=1,…4. The K-optimal design suggests that the 

best four observations for equation 53 are x = 0, 0, 1 and 1, so the line fitted by these observations 

is 𝑦 = 𝑥. The corresponding 𝜅(𝑀) of these four observations is minimized to be 2.618. It’s been 

observed in Figure 39 that the straight line defined by the end points only has good model 

performance at two ends. However, the best linear fitting of 𝑦 = 𝑥2 over 𝑥 ∈ [0,1] that 

minimizes the sum of squared error is 𝑦 = 𝑥 − 0.1667, the green line in Figure 39. The observers 

produced by the optimal designs localize the observations at the boundaries of the design space, 

which causes the poor overall fitting performance. To avoid localized observation points, one can 

introduce constraints to the optimization procedure so as to distribute observations over the 

domain or design space. For example, the distribution can be one observation between 0 and 

0.25, two between 0.25 and 0.75 and the last one between 0.75 and 1. A generalized constrained 

K-optimal design problem is given by, 

 min
𝑗1…𝑗𝑛

𝜅(𝑀) ∋ 𝑗𝑖 ∈ Γ𝑖(𝑖 = 1,…𝑛), 

(54) 

 

Figure 39 Quadratic function fitted by linear function 
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Where 𝜅(𝑀) is the condition number of 𝑀 and Γ𝑖 are the constrained regions (n=4, 𝑗𝑖 = 𝑥𝑖, Γ1 =

[0,0.25], Γ2 = Γ3 = [0.25,0.75] and Γ4 = [0.75,1] in this case). 

The solution to equation 54 gives four different observers, x=0, 0.25, 0.75 and 1. The 

corresponding  𝜅(𝑀) of these four observations is 3.25, which is larger than the unconstrained 

counterpart, 2.618. However, the line fitted by the observers of the constrained optimization is 

much closer to the best fitting line, 𝑦 = 𝑥 − 0.1667. Thus the judicious introduction of 

constraints to obtain distribution of the points balances the need to maximize the amount of 

information in the observer design with the need to guard against inadequacy of the proposed 

model. In this example, one might realize that the minimum number of observation points 

required for estimating the model parameters is two. By introducing redundancy (two additional 

observations) and constraining the locations of these extra points, one can provide the 

optimization procedure the flexibility to maximize the information content while, at the same 

time, ensure that all regions of the domain of the fit are represented. We use this strategy in the 

design of error observers for machine tools.  

4.2.3.5 Observer Design for the Errors of a 5-axis Machine 

A schematic of the 5-axis machine used in this study and its kinematic equivalent. The terms in 

can be rewritten so that we have 𝑒(𝑗) = 𝑀(𝑗)𝑝⃑, where 𝑒(𝑗) is the error vector at a point at some 

observation point 𝑗. 𝑀(𝑗) are row vectors whose terms are functions of the machine’s axial 

displacements at point 𝑗, and 𝑝⃑ is a set of unknown parameters (the perturbations introduced to 

the ideal kinematics of the machines, for example yaw of the x axis, rate of change of yaw error 

with displacement of the y-axis, rate of accumulation of positioning error of the w axis, etc.) It 

was found out that for the machine described above, the unknown parameter vector contains 32 

elements. 

The concepts discussed in last section were tested on the machine and error model whose 

construction was discussed in the previous paragraph. The volumetric errors were observed by a 

laser tracker. 290 quasi-random observations in the machine’s workspace were taken to identify 

32 parameters in the linear error model with modeling residual of 27.7 microns. The model was 

also tested to be valid on a different and smaller data point set. The linear error model in equation 

55 can be rewritten as the form of design matrix times the error parameter vector, 𝑝⃑ ∈ ℝ32.  

 [

𝑒𝑥,𝑖

𝑒𝑦,𝑖

𝑒𝑧,𝑖

] = [

𝑀𝑥,𝑖

𝑀𝑦,𝑖

𝑀𝑧,𝑖

] 𝑝⃑ + 𝑁⃑⃑⃑ ≅ 𝑀𝑖𝑝⃑, (55) 

where 𝑀𝑖 ∈ ℝ3×32 has elements that are functions of commanded  X, Y, Z, W and B axes 

positions, 𝑁⃑⃑⃑ ∈ ℝ3 is the observation noise vector, and the predicted volumetric error 

components are given by 𝑒𝑥,𝑖, 𝑒𝑦,𝑖 and 𝑒𝑧,𝑖. 

To track the evolution of thermal errors, based on consultation by the users, it was decided that 

we design the observer so that the time for making measurements was limited to 25 minutes.  

Based on prior experience, it was therefore decided to limit the number of measurement points 
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for the observer to 80. The linear error model in equation 56, as previously explained can be 

rewritten in the form of design matrix times the error parameter vector, 𝑝⃑ ∈ ℝ32. With 80 

observations, an identification system with 240 equations can be produced, given by: 

 

𝑒 = 𝑀(𝑗1 … 𝑗80)𝑝⃑, (56) 

Where 𝑀 ∈ ℝ240×32 is the design matrix controlled by 80 design points 𝑗1 … 𝑗80 and 𝑒 ∈

ℝ240contains the components of the measured error vectors in the observer point-set. 

The optimization problem that seeks to maximize the amount of information carried by 80 design 

points suggests the best set of axes command. Each design point is controlled independently by 

the commands of X, Y, Z, W and B axis. Therefore, the problem has 80x5 degrees of freedom 

subjected to the size of command space defined by the limitation on each axis.  

 

Figure 40 K-optimal designed observers given in machine tool base frame 

The K-optimal observers can be produced by solving the constrained optimization problem. This 

was encoded in a MATLAB program, using the generalized constrained optimization function 

FMINCON takes as input the definition of 𝑀 in terms of axial positions of the machine and the 

constraints of the workspace. This function finds a local minimum, hence it was called several 

time with different randomly generated, feasible initial solutions. In all cases, the target function 

converged to the close values. The positions of the measurements points in the work envelop of 

the machine are shown in Figure 40(a). The condition number of the unconstrained K-optimal 

designed matrix is greatly reduced to 111.3, compared with 437.8, the condition number of the 
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design matrix given by 290 quasi-random observations. However, the observations for the K-

optimal observer are highly localized and located primarily near the bottom of the workspace. In 

the process of minimizing the influence of errors in observations, it also minimizes the influence 

of the observations. As aforementioned, the unconstrained location of points for the optimal 

design of observers is expected to produce such localization. To obtain a more uniform location, 

the workspace of the machines is sliced into 4 zones along the y axis. Each slice is further 

decomposed into a central block and an annular space (having the same volume). Thus, the 

workspace is broken up into 8 equal volumes. Constraints are then introduced into the 

aforementioned optimization program to ensure that each of these 8 volumes contains 10 

measurement points of the new “constrained” K-optimal observers.  The result of the 

introduction of these distribution constraints is given in Figure 40(b) the condition number for 

the constrained K-optimal design matrix is 207.3. It can be seen that the constraints successfully 

spread the measurement points over the whole workspace, but the price paid for introducing 

these constraints is also apparent in the increment of condition number.  

4.2.4 Users & Use Cases 

4.2.4.1 Experimental study of the behavior of the Constrained K-Optimal Observer 

An experiment was designed to test the aforementioned 80-point, constrained K-optimal 

observer on the machine described in the previous section. We also performed a similar 

experiment with the unconstrained K-optimal observer. In this experiment, our objectives were 

to (1) check how error models using the parameter estimates it produces compare with those 

using parameters estimated from the more traditional, measurement-intensive quasi-random 

point sets, and (2) determine its ability to track changes in these parameters as the thermal state 

of the machine changes, and (3) assess improvements, if any, in the observer’s performance 

brought about by the introduction of constraints to distribute the measurements in the 

workspace.  

An API Radian laser tracker with active target system shown in Figure 41 is used to collect the 

data over the entire 3D space. The 80 points in the K-optimal observer were analyzed for 

reachability by the tracker. It was found that 4 points were not reachable. The value of objective 

function for the observer with the remaining 76 points increased from 111.3 to 122.0, which was 

not changed significantly. The machine was programmed to carry the active target of the tracker 

and dwell for a few seconds at these 76 measurement points. The tracker and machine were 

synchronized so that the tracker recorded the position of the target after the machine had settled 

at a measurement point.  
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Figure 41 Machine tool work cell 

This measurement cycle was repeated at intervals of one hour. Six such measurements cycles 

were performed. The first one at the start of the experiment is able to identify the errors of the 

machine’s initial state. In the four intervals between the first five measurement cycles, the 

spindle of the machine and the axes of the machine were exercised at roughly half their maximum 

speeds to heat up the machine. The machine was allowed to cool in the interval between the 5th 

and 6th measurement cycles. The schedule of the experiment is shown in Figure 42.  

 

Figure 42 Measurement, heating and cooling cycles 

Prior to the start of the experiment, the laser tracker is mounted at the center of the table on top 

of a thermal isolation block. A set of measurements are taken and processed to align the 

measurement frame to the machine’s coordinate system. Further, measurements are made to 

assess the repeatability of measurements of the laser tracker on the machine.  This was found to 

be around 20 microns. Additionally, the machine was instrumented with 16 wireless thermal 

sensors to record temperatures at different positions of the machine structure. Four packet radio 
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transceivers, Adafruit Feather M0 RFM96 LoRa Radio (433 MHz) with 13 temperature sensors 

(TMP 36) were placed over the course of the experiment, and the data acquisition system 

transmit temperature data to a computer-based server, which allowed us to monitor and record 

the temperature in real time. Each of the 4 linear axes was instrumented with 3 temperature 

sensors (one on the drive and the others distributed around the length of the axes). One of the 

sensors on the Y-axis was used to monitor the spindle housing temperature. Temperatures were 

recorded at 1 minute intervals during the experiment.  

The experiment was commenced in the morning and concluded late afternoon. The data 

recorded in each measurement cycle at the measurement points was fed into a MATLAB program 

and used to identify the parameters of the error model. A similar experiment was conducted with 

the unconstrained K-optimal observer. In this case, the experiment was conducted without 

running the spindle between measurement cycles (the reason was to reduce the uncertainty in 

repeated mounting and dismounting the active target). 

The following are some key points in the processing of the data obtained in each measurement 

cycle. For the initial measurement cycle, misalignment between the measurement and 

movement frame,𝑇0,1 and error parameters, 𝑝⃑1 are identified separately. In all subsequent cycles, 

the workspace drift is picked up by the constant terms of the error model. Thus, in the first 

measurement cycle, we solve two minimization problems: 

(1) Identify misalignment between the measurement and movement frame, 𝑇0,1 in the initial 
cycle , 

 

 

min
𝑇0,1

∑‖𝑇0,1𝐻𝑖𝑟𝑡 − 𝑞⃑𝑖,1‖
2

76

𝑖=1

, (57) 

 
where 𝑇0,1𝐻𝑖𝑟𝑡 is the ideal position of the ith measurement point predicted by the ideal forward 

kinematics and 𝑞⃑𝑖,1 is the actual position measured by the laser tracker at the ith measurement 
point 
(2) Estimate the 32 error parameters, 𝑝⃑1,  

 

min
𝑝⃑1

∑‖𝑀𝑖𝑝⃑1 − (𝑇0,1𝐻𝑖𝑟𝑡 − 𝑞⃑𝑖,1)‖
2

76

𝑖=1

, (58) 

 

where 𝑀𝑖𝑝⃑1 is the modelled error, 𝑇0,1𝐻𝑖𝑟𝑡 − 𝑞⃑𝑖,1 is the observed error. 

For all subsequent (the 2nd to 6th) cycles, the misalignment between the measurement and 

movement frame 𝑇0,𝑗 is not updated. 𝑇0,1 is used as the starting reference for the thermal drift 
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of the machine and to give the growth in errors due to thermal effects. Therefore, the jth error 

parameter group denoted by 𝑝⃑𝑗 is identified using a single-step identification (j=2,3…6), 

 

min
𝑝⃑𝑗

∑‖𝑀𝑖𝑝⃑𝑗 − (𝑇0,1𝐻𝑖𝑟𝑡 − 𝑞⃑𝑖,𝑗)‖
2

76

𝑖=1

 (59) 

 

The modelling residual at the ith observation of the jth cycle can be obtained by,  

 
𝑅𝐸𝑆𝑖 = ‖𝑀𝑖𝑝⃑𝑗 − (𝑇0,1𝐻𝑖𝑟𝑡 − 𝑞⃑𝑖,𝑗)‖2

 (60) 

 
4.2.4.2 Results and Discussion on Constrained K-Optimal Error Observer  

The statistics of the behaviour of the models identified for six different thermal states are shown 

in Table 15. The observed mean and max are the statistics of the errors observed after the tracker 

placement error are removed from the tracker readings. The residual mean and max are the 

statistics of the difference between the observed errors and those predicted by the identified 

models (one would expect these error statistics if the identified model was used for 

compensation). Figure 43 shows the temperatures recorded by four wireless transmission 

systems.  

Table 15 Model performances on different states (constrained K-optimal) 

Machine 
State 

Observed (μm) Residual (μm) %Decrease 
Mean Max Mean Max Mean Max 

Initial 119.1 265.9 26.3 98.2 77.92% 63.07% 
Heating 134.4 279.6 31.5 97.2 76.56% 65.24% 
Heating 154.0 310.2 28.8 94.5 81.30% 69.54% 
Heating 169.6 311.6 33.9 113.4 80.01% 63.61% 
Heating 181.9 331.6 30.9 111.6 83.01% 66.34% 
Cooling 157.3 309.4 29.8 101.7 81.06% 67.13% 
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Figure 43 Temperature variation over the course of the experiment 

 

The models identified by making measurements at points prescribed by the constrained K-

optimal observer over 6 measurement cycles suggest highly repeatable performance for each 

thermal state. During the first data collecting cycle (initial state), the model provides 77% and 

63% reductions in the mean and maximum magnitude of error, respectively. These percentages 

increased as the average magnitude of the machines errors increased because the average 

magnitude of the residuals remained a relatively narrow (8 micron) band. 

The observer performed well in terms of explaining the error. The repeatability of the positioning 

was around 20 microns (machine and laser tracker combined). Further, an additional uncertainty 

of about 5 microns was introduced because the active target had to be removed and remounted 

between measurement cycles (because the heating cycles required the spindle to be run). The 

average magnitude of the residuals at the observer measurement points over six experiments 

was close to 30 microns, suggests that the identified models were capturing most of the 

systematic errors of the machine and adjusting the parameters appropriately to adjust to thermal 

changes of the machine. 

 These results are comparable to those reported in previous work on the same machine, using 

the same kinematic model but, instead using a quasi-randomly generated set of 290 observation 

points. In the aforementioned work, the average magnitude of the residuals was 27.7 microns. 

Thus, with the machine’s thermal condition varying, additional uncertainty of removing and 

replacing the laser target in the spindle and a measurement set reduced by more than a third, 

the constrained K-optimal observer produced comparable performance. The feasibility of using 

a smaller and more strategically-chosen point set to perform on-line thermal error tracking is 

thus demonstrated. The measurement cycle time for measurements for this reduced set of points 

is only 24 minutes. This suggests that, with a quick data collection strategy and a robust error 
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model parameter estimation procedure, one might be able to track and compensate the thermal 

errors as they evolve by executing a process intermittent gaging and error updating strategy. 

One can compare the performance of tracking approach to that of a static calibration approach 

that does not attempt to track and compensate thermal errors. In such a situation the machine 

is calibrated once (typically, a quarter or a month or, optimistically, at the beginning of a shift) 

and the results are used, without regards to the thermal state of the machine, for compensation 

of its errors during operation. Simulating an optimistic situation, where the machine is calibrated 

at the beginning of the shift and the results of the calibration are used through the entire shift, 

we would obtain 𝑇0,1 and 𝑝⃑1 in the first cycle (initial state) and use these to calibrate the rest of 

five data sets. Thus, the residual at the ith observation of the jth cycle is given by:  

 
𝑅𝐸𝑆𝑖 = ‖𝑀𝑖𝑝⃑1 − (𝑇0,1𝐻𝑖𝑟𝑡 − 𝑞⃑𝑖,𝑗)‖2

, (𝑗 = 1,… 6) (61) 

The statistics of the residuals produced by this approach (or the performance of a static 

compensation approach) are given in Table 16. The average model residual grew from 26.3 to 

155.1 microns in the five-hour heating up process and reduced to 120.7 after a one-hour cooling 

period. Over a 400-minute period of operation, the compensations estimated in the cold state of 

the machine, though producing some improvements in the error, are seen to become increasing 

ineffective. After 5 hours of heating, the compensations only produce a 15% reduction in error.  

Table 16 Thermal drifts without updating the error parameters 

Machine 
State 

Observed (μm) Residual (μm) % Decrease 
Mean Max Mean Max Mean Max 

Initial 119.1 265.9 26.3 98.2 77.92% 63.07% 
Heating 134.4 279.6 77.1 122.6 42.63% 56.15% 
Heating 154.0 310.2 115.4 180.0 25.06% 41.97% 
Heating 169.6 311.6 138.6 208.8 18.28% 32.99% 
Heating 181.9 331.6 155.1 235.0 14.73% 29.13% 
Cooling 157.3 309.4 120.7 208.6 23.27% 32.58% 

 

In many situations, instead of opting for a static calibration or attempting to update the entire 

parameter vector (to compensate for workspace drift and distortion), one may opt to probe a 

few points, estimate the drift and program in a shift of the programming origin based on these 

measurements. We simulate this situation by doing a full calibration in the first cycle, then we 

use fixed error parameters, 𝑝⃑1 but update workspace drift specified by 𝑇0,𝑗, which now has only 

three translational degrees-of-freedom. For the remaining five measurement cycles, the 

workspace drift, 𝑇0,𝑗 T0,jis identified by: 
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min
𝑇0,𝑗

∑‖𝑀𝑖𝑝⃑1 − (𝑇0,𝑗𝐻𝑖𝑟𝑡 − 𝑞⃑𝑖,𝑗)‖
2

76

𝑖=1

, (𝑗 = 2, …6) (62) 

The same error parameters, 𝑝⃑1 is used to predict the errors at the same observer locations. The 

prediction errors of the ith observation of the jth cycle is given by, 

 
𝑅𝐸𝑆𝑖 = ‖𝑀𝑖𝑝⃑1 − (𝑇0,𝑗𝐻𝑖𝑟𝑡 − 𝑞⃑𝑖,𝑗)‖2

, (𝑗 = 2,… 6) (63) 

As shown in Table 17, updating 𝑇0,𝑗 is effective in controlling the inaccuracies caused by the 

thermal effect. The worst mean model residual occurs at the end of the heating period and is 

measured to be 98.1 microns, which is lower than that produced by using static calibrations. 

However, the model performance is seen to degrade severely when compared to the full 

identification of the model parameters. One can see that that using a static compensation and 

tracking only the drift of the workspace explain only 46.07% of the observed thermal error. These 

comparisons between full periodic parameter identification, partial (drift only) identification, and 

no identification not only illustrate the scale of the relative influence of thermal errors 

(workspace drift and distortion), but also demonstrates the need and importance of periodic 

updates to calibrations. 

 
Table 17 Thermal drifts (only compensate the shift of the measurement frame) 

 

Machine 
State 

Observed (μm) Residual (μm) % Decrease 
Mean Max Mean Max Mean Max 

Initial 119.1 265.9 26.3 98.2 77.92% 63.07% 
Heating 134.4 279.6 68.7 184.4 48.88% 34.05% 
Heating 154.0 310.2 73.3 203.0 52.40% 34.56% 
Heating 169.6 311.6 88.6 243.1 47.76% 21.98% 
Heating 181.9 331.6 98.1 255.5 46.07% 22.95% 
Cooling 157.3 309.4 84.9 195.6 46.03% 36.78% 
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Figure 44 Variation of error parameters 

The thermal effects are observed to cause the average error of the machine to grow from 119.1 

in the cold state to around 181.9 microns after 4 heating cycles. With compensation, the error 

model parameters (see appendix for descriptions) estimated by the single step identification 

process error, described in the previous section, would hold the average error of the machine to 

around 30 microns. The error parameters were identified by the least-squares fitting. The 

parameters related to X, Y, Z, and W axis at different machine’s thermal states are shown in Figure 

44. It can be seen that only parameters associated with the Y and W axes show significant changes 

during four heating cycles. The spindle was turned on during the heating process and the readings 

of the wireless temperature sensors show that the temperature readings of W and Y-axis 

increased by 4.5 and 3oC, respectively. The other parameters related to the X and Z-axis, on the 

other hand, had less than a 2oC rise in temperature during the 400-minute experiment. By 

studying the thermal behaviour of each axis, one can understand the characteristics of the 

machine, which might be used in error avoidance. For example, it is observed that the error 

parameters associated with W-axis are varying significantly during an operation. It shows that 

the machine’s positioning error caused by distortion of W-axis could be more significant. 

Therefore, the positioning error could be avoided by replacing a W-axis movement with a Z-axis 

movement. Besides, it is observed that some parameters do not vary significantly over time and 

could be considered constants (e.g. parameters associated with X and Z axes). By making such 

assumptions, the number of undetermined error parameters can be reduced and thus reduce 

the needed number of observations. 
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As mentioned in the previous section, we also conducted an experiment on the unconstrained K-

optimal observer design (i.e., observer obtained without measurement point distribution 

constraints). The statistics of the results are shown in shown in Table 18. First, because the 

machine spindle was not run, between measurement cycles, the observed errors stayed 

constant. The temperatures during the experiment were observed to remain constant to within 

2oC. While the parameters identified based on the measurements prescribed by the observer 

explain about 70% of the observed error, it can be seen that in terms of magnitude, the residuals 

are higher than those seen in the constrained observer as well as in the quasi-random 

measurements. 

Table 18 Model performances on different states (unconstrained K-optimal) 

Machine 
State 

Observed  (μm) Residual  (μm) %Decrease 
Mean Max Mean Max Mean Max 

Initial 176.0 460.9 47.9 114.5 72.78% 75.16% 
Heating 180.4 449.4 49.2 114.8 72.73% 74.45% 
Heating 177.2 444.1 48.9 110.8 72.40% 75.05% 
Heating 176.7 453.7 48.4 119.5 72.61% 73.66% 
Heating 172.9 443.5 47.6 110.8 72.47% 75.02% 
Cooling 169.8 427.4 49.8 130.4 70.67% 69.49% 
Cooling 163.8 417.6 46.5 105.8 71.61% 74.66% 

 

4.2.4.3 Concluding Remarks on Error Observers 

The idea of using error observers for machine tool errors was introduced in this technology. An 

optimal observer design identifies a set of locations in the machine’s workspace at which to make 

error measurements, so that the information contained in the set to estimate the parameters of 

a given error model is maximized. The approach can be used for any of the many proposed 

volumetric/quasi-static machine tool error models. The concept of applying the K-optimal design 

that minimizes the sensitivity of measurement errors on the parameter estimates has been 

proposed. The use of a single optimality criterion in the observer design leads to localization of 

the measurement points either near the center of the workspace or at its boundaries. To 

overcome the tendency, we introduce constraints, to uniformly distribute the observer points 

over the workspace. We also introduce redundancy (more measurement points than the 

minimum needed) to guard against the effects of model inadequacy. Constrained and 

unconstrained observer designs based on the K-optimal design criterion have been generated for 

a 5-axis machine. 

Experiments have been conducted to assess the behavior of K-optimal (minimizing the condition 

number of the design matrix) observers. Compared with the condition number of 437.8 for 290 

randomly-generated commands, the 80-point K-optimal observers have a better conditioned 

design matrix with condition number of 111.3. The constrained 80-point K-optimal observer with 

a condition number of 207.3 is also an improvement. Over six data collection cycles, the 
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constrained K-optimal observer produced mean and maximum residuals of 30 and 100 microns, 

respectively, which are comparable to those (27.7 and 107.3 microns) produced by the 290 quasi-

randomly generated point set. This clearly demonstrates that a smaller strategically chosen set 

of measurements can produce estimates comparable to those produced by larger point sets. 

In order to test the possibility of using the observer sets to track the thermal drift of a five-axis 

machine with 32 error parameters, a data collecting cycle consisting of 76 constrained K-optimal 

observers was used for each of the six thermal states including initial set and four heating and 

one cooling cycles. This produced six sets of error model parameter estimates. It is observed that 

the error parameters correspond to W-axis vary the most because it held the spindle. The Y-axis, 

as the closet axis to W-axis and the second most heated axis, the variation of the error 

parameters associated with the Y-axis vary is also considerable. The mean and maximum 

modeling residuals for six thermal states are found to be 26.3 and 98.2 microns, respectively, 

which are close to the mean and maximum modeling residuals (27.7 and 107.3 microns, 

respectively) modeled by 290 quasi-random generated points. This also shows that using a 

smaller observer set does not corrupt the accuracy of the error model. More importantly, the 

thermal error of the machine was observed to be significant (around 60 microns, from about 

119.1 microns to about 181.9 microns over the course of 320 minutes) during the operation of 

the machine. The largest mean residual error for the six measurement cycles conducted was 

observed to be 33.9 microns. During this period, if a static compensation model whose 

parameters were estimated with the machine in a cold state was used, the mean residual error 

(the average error one would expect after compensation) would have risen from 26.3 to 155.1 

microns over the course of 320 minutes. If rudimentary workspace drift was compensated, the 

residual error would have grown from 26.3 to 98.1 microns. This not only demonstrates that the 

observer is able to consistently track thermal errors of the machine as its thermal state was 

continuously varying, but also serves as a reminder of the importance and magnitude the thermal 

component of quasi-static errors. 

This research has demonstrated the feasibility of tracking thermal errors with constrained K-

optimal observers with periodic measurements taking only around 24 minutes to perform. Future 

work will address the evaluation of D- and A-optimal observers. Additionally, faster and less 

intrusive (than laser trackers) methods for implementing the observers need to be explored. The 

error model can be simplified by replacing the error parameters with stable thermal behavior 

with constants. The fewer parameters, the fewer observations would be required to get robust 

estimation. Finally, this work opens up possibility using temperature readings for tracking 

thermal errors. By correlating the estimated values of the error model parameter to 

temperatures in different parts of the machine, it should be possible to compute volumetric 

errors using only temperature readings, thus reducing the time required by, and invasiveness of, 

the thermal error tracking system. 

4.2.5 Software and Systems Requirements 
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The construction of error model for a machine, especially machines with more than 3 axis can be 

complex and might require both algebraic (symbolic) manipulation and computation.  MATLAB, 

which can handle symbolic variables and numerical calculations, is chosen as the environment in 

which to build software for the techniques developed in this project. After the volumetric error 

model is derived, it is used for observer design, which is a nonlinear optimization problem with 

linear constraints. Therefore, several functions are developed and called in the program to set it 

up and solve it to obtain the optimal observer. These functions are listed below: 

1. x = fmincon(TarFun,x0,A,b) 

Thus function is a solver of the minimum of constrained nonlinear function, which is specified by, 

min
𝑥

𝑓(𝑥)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴𝑥 ≤ 𝑏, 

where 𝑓(𝑥) is a nonlinear target function of 𝑥 given by TarFun(explained in the next function), 

𝐴𝑥 ≤ 𝑏 describes all linear constraints of the problem and 𝑥0 is an initial guess to start the solver.  

More details can be found at https://www.mathworks.com/help/optim/ug/fmincon.html.  

2. fx=TarFun(x) 

The function specifies the target to be optimized. In this case, it describes the condition number 

of the design matrix as function of all controllable variables, x.  

3. [A,b, Lower_bound, Upper_ bound]=observer_distributor(min_travel, max_travel,sf) 

This function generates upper and lower bounds for the controllable variables to be optimized in 

fmincon. A and b can be directly fed into the optimization solver. 

4. M=Volumetric_error_model(a,b,c,Joint_command,Tool_length) 

The machine’s volumetric error model, 𝑒(𝑗) = 𝑀(𝑗)𝑝⃑ is the linear relation between a set of joint 

command, 𝑗 and its corresponding errors, 𝑒. This function depicts the matrix, 𝑀(𝑗) ∈ ℝ3×32 as a 

function of all joint commands. a,b,c are the angular displacement errors of the laser tracker, use 

zeros for convenience. 

4.2.6 Features & Attributes 

The quasi-static error modeling approach we’ve developed has the following features: 

1. The modeling approach requires a versatile metrology instrument such as a laser tracker, 

allowing for a model with a large number of parameters to be identified, thus proving the 

effectiveness of the approach.  

2. Standard tests and calibration procedures like the ASME B5.54 and the ball-bar only 

calibrates specific trajectories and expose a sub-set of the underlying error sources. These 

measurements cannot be composed into complete models for volumetric error 

https://www.mathworks.com/help/optim/ug/fmincon.html
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compensation. The proposed approach using a laser tracker, on the other hand, is capable 

of building the volumetric error model of the machine. 

3. The modeling approach is general and can be applied to a variety of CNC machines. 

4. In the current application, only first order terms are considered for simplicity. A higher 

order model that better describes machine’s error characteristic is another approach to 

reduce the modeling residual.  

The machine-tool observer design has the following features: 

1. The general approach of designing the optimal error observer is not limited to the error 

model used in this report. The same methodology can be applied to design an observer 

for any error models (e.g., the error models constructed by different perturbed 

kinematics or the error models for machines with different structures and designs). 

2. The approach is agnostic to the technology used to measure/observe errors. It identifies 

the most informative positions to be observed in the machine’s workspace. The 

robustness in the estimation is maximized no matter what metrology instrument is used 

for data collection. 

3. In its current implementation, 80 points of measurement are used for designing the 

observer. This introduces redundancy and but provides robustness. The size of the 

observer could be reduced to 50~60 measurements points to shorten measurement cycle 

and embed it into the production cycle. 

4. In its current implementation, this theory has been used to verify the feasibility of using 

K-optimal observers. However, D and A-optimal design observers could be also obtained 

using the programs develop. They might be applied to different machining scenarios. 

4.2.7 Modes of Operation 

The program is designed to update the machine’s quasi-static error model for compensation 
purpose over time. Our work has not addressed the introduction of compensatory actions during 
the use of the machine. However, commercial systems from machine vendors such as VCS from 
Siemens can be used for this purpose. 

1. To start a new calibration cycle, a metrology engineer sets up the laser tracker, which 
takes the error measurements during the measurement cycle.  

2. The machine operator commands the machine to move to the positions of observers, 
while the laser track collects the data. Once finished, the engineer feed the data into 
program 1, and the volumetric error model can be obtained. 

The above two steps can be repeated periodically to keep the track on machine’s thermal 
behavior. 
 

 Adaptive Machining 

4.3.1 System overview 
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In order to identify casting defects such as insufficient stock or poorly mounted parts, a 3D scan 
of key surfaces of a given part is desired. In-machine laser scanning provides a process which 
lends itself to automation of the scanning process since the machine itself can provide the motion 
necessary for the scanning device to view all surfaces of interest on the part. In this project a 
calibration process was developed suitable for automatic identification of the location and 
orientation of the scanner head with respect to the machine end effector.  A method using 
VERICUT to lay out and verify desired scan paths was developed along with MATLAB software to 
generate the g-code and reference files needed by the scanning software.  Several methods of 
linking the scan data with the associated position of the machine corresponding to any given scan 
line were examined and the limitations of each identified.  A hybrid method combining the 
discrete and constant velocity methods was also developed in order to allow high density data 
on machines like the PAMA whose limitations prevent the use of simpler methods. Software was 
also developed to automatically collect scan data from each individual scan pass and transform 
the point coordinates from each data set into the same machine base frame. 
For in-machine scanning of a part, the architecture used is displayed in Figure 45. A trigger signal 

from the machine tool controller is needed to coordinate the motion of the machine and the 

collection of scans.  If access to the encoder signal for the axes used for scanning this would be 

ideal, but several methods were developed which are able to make use of any single digital signal 

that can be triggered with an M code within the NC program. 

 

 

Figure 45: In-machine scanning system architecture ( 

A virtual gage is a digital simulation that combines real data (measured from an artefact) with a 

computer representation of a condition or test that the data should satisfy. For example, the 
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former might be a point-set extracted from the scanned data of a part while the latter might be 

the equation of a plane extracted for part model that represents an ideal material condition that 

must be satisfied by all points in the aforementioned point-set. The virtual gage assembles these 

entities into a common reference frame, creates the appropriate set of inequality conditions to 

be satisfied, and then checks them on each point in the point-set.  Figure 46(a) shows a typical 

situation encountered in the test case of deciding the acceptability of a casting for final 

machining.  To produce an acceptable finished part, a machining allowance of do is desired on 

each machined surface. The virtual gage software computes the rigid body transform (translation 

and rotation) of the point-set to produce each point in the set representing the casting surface 

satisfies the gage equation (given in Figure 46(a)). Obviously, a part will have several such 

specifications and the virtual gage software is expected to find a single rigid body transformation 

with which to simultaneously satisfy all of them. One may introduce conditional steps into the 

procedure, for example, if all the gages can be satisfied, then the software should ‘equalize’ the 

allowances on all machined surfaces.  As is apparent, each virtual gage introduces one or more 

sets of inequality constraints as does the conjoining of the reference frames of point-set and gage 

planes. Thus, the problem becomes a constrained optimization problem, where an optimal 

solution satisfies the virtual gage constraints and minimizes or maximizers some objective (such 

as difference in machining allowance on all machined faces).  

 

Figure 46 Virtual gage theory 

Thus, in summary, to setup a virtual gaging problem, a point cloud representing the physical part 

and virtual gages idealized geometrical surfaces and representing the dimensional, tolerance and 

allowance specifications are required. In the GD&T standard, dimension and tolerance are 

defined based on a reference or datum coordinate frame. This may be different from the 

coordinate system in which machining is programmed. For simplicity, a homogeneous 

transformation is applied so that the datum coordinate system is made coincident with the 

machining programming coordinate system. 

The Adaptive Machining system also consists of a software that can be run independently to 

modify the nominal NC program of the part to be machined by introducing minimal amount of 

additional lines in the nominal NC program. The software could be run in different configurations 

to provide the user with different levels of control in modifying the final NC program. As part of 

this project, we also identified a commercially available simulation software program  (Vericut) 
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that can be used to simulate and verify the modified NC program. In particularly, we updated the 

CNC machine model and tool definitions for machining simulation. The software also has 

capability to perform machining simulation using a partial scan data and identifies tool and fixture 

collision errors, if any, in the process. The system was demonstrated for both nominal NC 

program modification and simulation.  

4.3.2  System Architecture  

Overall Adaptive Machining system architecture is show in Figure 47 and the procedure list as 

below. 

1. Incoming part variation is too large to be manufactured without adaptive manufacturing 

technology, and it needs to be reworked or scraped 

2. Scan part to get point cloud of the part’s geometric variation and misalignment 

information 

3. Calculate feasible solutions & optimize compensation 

4. Generate adaptive manufacturing process with compensation information 

5. High-quality manufactured part with all the features that meets the requirements 

 

 

Figure 47 Adaptive Machining system architecture 

The structure of virtual gage system operation is shown as a flowchart given in Figure 48. 
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Figure 48 Structure of virtual gage system operation 

 

Figure 49 represents the workflow for the NC program modification and its implementation 

during the adaptive machining process.  
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Figure 49 Flow chart showing the implementation of the adaptive machining process 

An alternative approach has also been explored in the current project to modify the tool path of 

the NC program operations in the CAD/CAM module before generating the NC program. This 

approach is different from minimally modifying the NC program with re-defining offsets as the 

tool path for different operations is modified in the CAD level. This approach will be applicable 

for adaptive machining in all cases where the machining operations are created using Siemens 

NX software. The software for this approach is created in visual basic programing which could be 

run as a journal program in the CAM module of the Siemens NX software. The workflow is shown 

in Figure 50. 

 
Figure 50 Flow chart showing the workflow for the tool path transformation approach during 

the adaptive machining process 
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4.3.3 System Development 

In order to accurately transform the raw scan data into 3-dimensional coordinates, it is necessary 
to know the machine’s position when each scan line was captured.  Several modes of operation 
are possible: 
 
Discrete method 

This method consists of moving the machine to a desired location and stopping, capturing 
a single scan line, then moving to the next desired position.  The discrete method 
therefore has exact information about the position of the machine for each scan line.  The 
discrete method is also simple to implement and requires only a digital output from the 
controller to trigger each scan. The discrete method is however very inefficient with 
respect to time if a relatively dense coverage is desired, as the machine must stop at each 
desired scan line location. Thus, the discrete method is only ideal for sparse data 
collection. 

1. Encoder method 
The encoder method is ideal if access to the encoder signals is available. In addition to the 
digital output signal from the controller used to signal the start of each scan pass, the 
encoder signal lines from the axis moved during the scanning can also be wired to the 
Laser Scanner Controller. The scans can then be triggered based on encoder pulses which 
are spaced in known increments from the start position of each scan pass. This method 
produces exact information regarding the location of each scan line, and is capable of 
collecting dense data efficiently.  The required access to an encoder signal may limit its 
use.  In the case of the PAMA machine, access to the encoder signals without violating 
the manufacturer support policies would have required a custom service from the 
manufacturer with cost that was not feasible for the scope of this project. This method 
was validated on a small 3 axis machine at Missouri S&T and produces results equivalent 
to the discrete method but only requires the machine to stop between scan passes and 
can collect up to the full scan batch size limit of 15,000 scan lines per pass with density up 
to the resolution of the encoder signal. 

2. (Constant) Velocity method 
The alternative to using an encoder signal to trigger scan line collection is to capture at a 
set time spacing after the scan batch is triggered to start. Assuming the machine is moving 
with constant velocity, this will result in a regular capture of scan lines with spacing based 
on the machine travel speed divided by the scan capture frequency. Figure 51 illustrates 
the fact that due to differences in communication timing, the machine and scanner will 
likely not start simultaneously.  The machine will also not instantaneously reach the set 
constant velocity.  Therefore there is some unknown offset between the actual machine 
position and that which would be initially calculated based on the scan line number under 
the assumption that the scan data starts at the same instant as the machine and are 
evenly spaced positions.  There may also be portions of the scan data at the beginning 
and end which must be discarded due to not being constant velocity during acceleration 
and deceleration of the machine.  If the timing offset between the machine and scanner 
start is repeatable (as well as the machine’s acceleration profile being repeatable) then 
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the offset can be identified during a calibration process and applied to any scans 
thereafter. This method is comparable to the encoder method in data collection efficiency 
(though the acceleration and deceleration periods at the ends of each scan pass are not 
valid in this method).  The accuracy of the information regarding position of the machine 
for each scan line depends on the consistency of the start timing of the machine and 
digital output used to trigger scan batches.  For the PAMA machine however it was found 
that the timing of the machine motion start was not consistent, and therefore the 
resulting offset was different for every run making this method infeasible.    

 

 
Figure 51: Velocity method 

 

3. Hybrid method 

This method was developed in an attempt to overcome the limitations of the Velocity 

method and allow for dense data collection on the PAMA. Scans are collected with the 

desired data density using the Velocity method and the Discrete method is also used to 

collect scan lines sparsely distributed through the scan passes used for the velocity 

method.  The offset for each scan pass is then calculated by finding the offset value that 

best aligns the Velocity data with the Discrete measurements (which have known 

positions). The number of Discrete scan lines per pass necessary depends on the 

uniqueness of the surface features.  This method yields poor results in aligning the two 

datasets when scanning featureless surfaces which are relatively equidistant to the 

scanner throughout the scan pass as scans to either side of the Discrete scan lines will 

look very similar.  Assuming that the surface either has unique features or sloped surfaces 

with respect to the scanner, the correct offset can be automatically optimized with good 

accuracy.  The efficiency of data collection is less than the Encoder or Velocity methods 

since it requires collection of sparse Discrete data in addition to the Velocity data as well 

as an additional post-processing step to identify the correct offsets for each pass.  
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However, it is capable of collecting dense data much more efficiently than the Discrete 

method alone, and is not limited by the lack of encoder signal or consistent start timing. 

 
For the PAMA machine at the Caterpillar Tech Center, a variety of tests were run to determine 
the suitability of each method.  Figure 52 shows the result of a test in which a sloped part was 
scanned multiple times using the same scan path.  The resulting measurements show that the 
PAMA machine has significant variability in the offset due to startup timing.  This meant that the 
pure velocity method was not viable on the machine and so tests on the PAMA using in-machine 
scanning were done using the hybrid method – correcting the offset from the dense velocity 
method data with sparsely collected discrete data.  
 

 

Figure 52: Velocity method PAMA offset consistency test (a) Raw data from same commanded 
portion of slope, measuring starting from each end. (b) Number of scan samples offset from 

true location for 9 iterations travelling in the same direction. 

Figure 53 shows the result of a test to determine whether the dwell time of the machine at each 

sample location affected the accuracy of discrete method sampling.  Sample points along a sloped 

surface were tested using discrete sampling and a variety of dwell times.  The results all ended 

up being within a few microns of each other and did not have any discernable relationship to the 

dwell time, therefore it was concluded for the PAMA machine that simply stopping at each 

discrete point with no dwell was sufficient for full accuracy of discrete method sampling. 
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Figure 53: Discrete sampling dwell time test 

The time required for the machine to reach a constant velocity was also tested.  Figure 54 shows 
the result of measuring a flat sloped surface at three different speeds.  The starting location was 
on the surface of the slope and the resulting measurements were aligned so that the start of 
visible motion was aligned with a time of 0.   
 

 
Figure 54: Acceleration profile testing 

 
In order to accurately measure the location of a part using the laser scanner, the position and 
orientation of the scanner with respect to the machine’s tool frame must also be identified. A 
calibration piece was developed which would allow the position and orientation of the scanner 
frame with respect to the machine end effector to be determined. The design drawing for the 
part is shown in  Figure 55. The key aspect needed from the piece is a set of multiple 3D positions 
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relative to the machine base frame which can be uniquely identified from a variety of variations 
in scanning paths. To this end, a set of five flat surfaces were created at the top of the part which 
have enough slope to be clearly distinguishable, but also shallow enough slope so that all five 
surfaces can be scanned simultaneously from a single pass of the scanner. By fitting a plane to 
each of the five surfaces, the intersection points of the planes define four unique points which 
can be identified even if the exact spacing of the scanner samples does not capture the precise 
location of the corners.   
 

 
 Figure 55: Calibration Piece 

 
Figure 56 shows an example of the base frame (at the center of the table), tool frame, scanner 
frame and calibration feature. 
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Figure 56 Reference frames applicable to calibration. 

 
For any given point that is measured by the scanner, its position measured in the base frame is 

p, while the scanner records an x and z component in the scanner frame.  The scanner 

measurement relates to the base frame position of the point via the 4x4 transformation matrices 

associated with the machine forward kinematics F (which are a function of the commanded 

x,y,z,w, and b axes positions as well as the spindle angle s) and tool-scanner transformation T. 

[

𝑝𝑥

𝑝𝑦

𝑝𝑧

1

] = [𝐹(𝑥, 𝑦, 𝑧, 𝑤, 𝑏, 𝑠)][𝑇] [

𝑚𝑥

0
𝑚𝑧

1

]         (64) 

The y coordinate of the measurement will always be zero since the laser only captures 

measurements in the 2-dimensional scan plane formed by the projection of the laser stripe. The 

tool-scanner transformation matrix can be represented by a rotation matrix and a translation 

vector. 

𝑇 = [
𝑅 𝑡
𝟎 1

] , 𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] , 𝑡 = [

𝑡𝑥
𝑡𝑦
𝑡𝑧

] , 𝟎 = [0 0 0]                               (65) 

The forward kinematics transformation matrix will also be invertible (representing the transform 

from tool frame to base frame) and the inverse will have the form 

𝐹−1(𝑥, 𝑦, 𝑧, 𝑤, 𝑏, 𝑠) = [

𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33

𝑓14

𝑓24

𝑓34

0 0 0 1

]                                                           (66) 
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Applying the inverse of the machine kinematics to both sides of the original equation yields 

[

𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33

𝑓14

𝑓24

𝑓34

0 0 0 1

] [

𝑝𝑥

𝑝𝑦

𝑝𝑧

1

] = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝑡𝑥
𝑡𝑦
𝑡𝑧

0 0 0 1

] [

𝑚𝑥

0
𝑚𝑧

1

]                          (67) 

Which can also be written 

𝑓11𝑝𝑥 + 𝑓12𝑝𝑦 + 𝑓13𝑝𝑧 + 𝑓14 = 𝑟11𝑚𝑥 + 𝑟13𝑚𝑧 + 𝑡𝑥 

𝑓21𝑝𝑥 + 𝑓22𝑝𝑦 + 𝑓23𝑝𝑧 + 𝑓24 = 𝑟21𝑚𝑥 + 𝑟23𝑚𝑧 + 𝑡𝑦 

𝑓31𝑝𝑥 + 𝑓32𝑝𝑦 + 𝑓33𝑝𝑧 + 𝑓34 = 𝑟31𝑚𝑥 + 𝑟33𝑚𝑧 + 𝑡𝑧 

At this point there are two methods possible to solve for the unknown parameters.  If the location 

of given identifiable points are known via touch probe measurements, then the only unknowns 

are the parameters of the tool-scanner transformation.  The equation can then be rewritten in 

matrix form isolating these unknowns (where the right hand side is only the meaningful vector 

component of the vector result of [𝐹−1𝒑] with the concatenated 1 in the 4th component stripped 

away. 

[
𝑚𝑥 𝑚𝑧

0 0
0 0

0 0
𝑚𝑥 𝑚𝑧

0 0

0 0
0 0

𝑚𝑥 𝑚𝑧

1 0 0
0 1 0
0 0 1

]

[
 
 
 
 
 
 
 
 
𝑟11

𝑟13
𝑟21

𝑟23
𝑟31

𝑟33

𝑡𝑥
𝑡𝑦
𝑡𝑧 ]

 
 
 
 
 
 
 
 

= [𝐹−1𝒑]3𝑥1                   (68) 

If the above solution is viewed as being of the form Ax=b, then the matrices found for each 

feature measured can be stacked: 

[

𝐴1

𝐴2

⋮
𝐴𝑁

] 𝑥 = [

𝑏1

𝑏2

⋮
𝑏𝑁

]                                                             (69) 

For each feature point measured, the measurements and associated machine kinematics result 

in 3 additional rows. Since there are 9 unknowns, then a minimum of 3 independent feature 

points must be measured in order to find a unique solution.  If more feature points are measured 

(or the machine axes which are independent of whichever axis is used for scanning are varied) 

then there will be more equations than unknowns and the solution will be given by a least square 

fit. The solution vector can then be reassembled into the 4x4 transformation matrix. Note that 

the resulting solution does not directly yield the 2nd column of the transformation matrix. 

However, given the assumption that this represents a rotation matrix, the three columns of the 
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rotation matrix portion should form an orthonormal basis of ℝ3, so the 2nd column can be found 

by taking the cross product of the 3rd and 1st columns. Because of measurement noise, it is also 

possible that the resulting solution for the 1st and 3rd columns are not perfectly independent or 

of perfect unit length. To find the best fit orthonormal set, the vectors can be made into unit 

vectors by dividing by their magnitude. Then the directions of the vectors can be made 

independent by subtracting half of the projection of itself onto the other vector. 

𝐶1
′ = 𝐶1 −

1

2
𝐶2(𝐶1 ⋅ 𝐶2), 𝐶2

′ = 𝐶2 −
1

2
𝐶1(𝐶1 ⋅ 𝐶2),                                (70) 

An exaggerated example is illustrated in Figure 57. 

 

Figure 57 Forming a best fit orthonormal basis. 
 
Alternatively, to using touch probe measurements, the locations of identifiable feature points 

can also be treated as unknowns themselves. In this case there are 3*N equations and 3*N+9 

unknowns where there are N feature points. In this case the only way to add additional 

measurements is to vary the values of the forward kinematics.  Though measuring the calibration 

part will nominally result in 3*N additional equations, many of these will not be independent.  

For the PAMA machine if the scan passes are run by moving the Y-axis, then measuring the 

feature points at an original configuration of the other axes, repeating the measurement with 

the X-axis shifted, and repeating again with the Z axis shifted is sufficient to identify the rotation 

matrix portion of the transformation but the translation vector will not be separable from the 

feature point coordinates.  In order to separate the translation vector of the tool-scanner 

transform from the point coordinates, a measurement set must be taken with an alternate angle 

of the B-axis (establishes the location of the base frame y axis and therefore the x and z 

coordinates of the feature points) and another with the spindle at a different angle (establishes 

the tool frame z axis and therefore the y-component of the feature points after accounting for 

the y-position of the tool frame). The linear equation to be solved is then of the following form: 

 

𝑪𝟐 
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[
 
 
 
 𝑀1

𝑀2

⋮
𝑀𝑁

𝐹1
−1

𝑅
0

0 𝐹2
−1

𝑅

…
0
0

⋮ ⋱ ⋮
0 0 … 𝐹𝑁

−1
𝑅]
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑟11

𝑟13
𝑟21

𝑟23
𝑟31

𝑟33

𝑡𝑥
𝑡𝑦
𝑡𝑧
𝑝1𝑥

𝑝1𝑦

𝑝1𝑧
𝑝2𝑥

𝑝2𝑦

𝑝2𝑧

⋮
𝑝𝑁𝑥

𝑝𝑁𝑦

𝑝𝑁𝑧]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
𝐹1

−1
𝑡

𝐹2
−1

𝑡

⋮
𝐹𝑁

−1
𝑡]
 
 
 
 

                                 (71) 

Where the Ms represent matrices of the same form as the left hand side matrix in the previous 

method and corresponding to one scan pass.  The F-1 matrices in the left side are the rotation 

matrix portion of the inverse of the machine forward kinematics at the instant that the 

measurement was taken (machine axis coordinates are known) and the F-1 matrices on the right 

hand side are those corresponding to the translation portions.  

Figure 58 shows a comparison scan of a sample object using calibrations based on the two 

methods.  Method 1, using the touch probe data was found to be much less accurate than 

Method 2, which relied solely on scanner measurements taken with different known machine 

variations in the rotary and linear axes during each scan pass of the calibration piece.  
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Figure 58: Comparison of calibration methods 

The final calibration procedure used is given as follows: 

Scanner Calibration 

Steps 1 and 2 only need to be done once for a chosen calibration setup if the calibration piece is 
mounted in roughly the same location each time.  Remaining calibration steps should be 
performed to identify the machine end effector to scanner head transformation each time the 
scanner is re-mounted. 

1. Mount the calibration piece onto the machine table or fixturing in an area that the 
scanner can scan the angled top surfaces without collisions. For ease of path generation, 
it is usually best to align the piece with axis directions.   

2. Generate a path of 5 scan passes (can add additional passes for increased accuracy of 
calibration result, but also requires increased time to complete the calibration) that 
include all 5 top surfaces of the calibration block in the scanning measurement range for 
each pass.  All scan passes should be of the same length and use the Y-axis for scan pass 
motion (code and method could potentially be modified to allow for a different axis scan 
direction). Scan path locations should be chosen to fit the following format: 

a. Base pass – set the spindle angle to zero (or whatever base angle is needed to 
point the scanner generally down) 

b. Base pass shifted slightly (10mm) in X 
c. Base pass shifted slightly (10mm) in Z 
d. Base pass with B axis rotated slightly (10 deg) – also adjust X and Z as needed to 

ensure the scan pass still covers all 5 top surfaces 
e. Base pass with spindle rotated slightly (10 deg) – also adjust X and Z as needed to 

ensure the scan pass still covers all 5 top surfaces 
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3. Scan the calibration block using a continuous mode (also scan with discrete mode and 
perform data alignment if machine requires hybrid method due to an inconsistent delay 
in starting which prevents pure use of the velocity method.) 

4. Open ProcessCalibScans.m and enter the starting positions of each scan pass used for the 
calibration scans as well as the file paths to the scan files and offset file. 

5. Run ProcessCalibScans.m.  Each scan pass will be displayed graphically and for each of the 
5 surfaces on the calibration piece, a bounding polygon should be drawn which 
encompasses a portion of the flat surface, but does not include any of the edges. This is 
repeated for each of the scan passes. The program will then fit a plane to the data within 
each of the selected areas, calculate the intersection points between the planes and use 
the locations of these intersection points as well as the known differences in machine 
location for each scan pass to identify the transformation between machine end effector 
and scanner head.  The result will be output to the MATLAB command line as well as saved 
as a variable in the MATLAB workspace.  Outputs include the rotation matrix ‘R’ describing 
the orientation of the scanner frame with respect to the end effector frame, the 
translation ‘t’ of the scanner frame with respect to the end effector frame, the full 4x4 
transformation matrix ‘transf’, and the locations which were identified of the corner 
points of the calibration part in the machine base frame (this can be used as a sanity check 
to ensure that the calibration was successful if the location that the calibration part was 
mounted is known).  

6. Copy the values of the generated transformation matrix ‘transf’ to the Vericut simulation 
by selecting the Scanner Tool from the machine model tree and then entering the values 
under the ‘matrix’ tab of the Configure Component panel. 

Copy the values of the generated transformation matrix ‘transf’ to the MATLAB script used to 
generate the scanning path G-code and position files ‘EditScanPath.m’ and run the script on the 
scan path waypoint outline desired in order to generate position files with the correct scanner 
transformation.  Alternatively, if position files have already been generated, the transformation 
matrix can be copied directly into each of the .csv files, replacing the previous transformation 
that had been used. 

 In order to plan and simulate scan paths without actual trial and error on the machine, a 
processing workflow using Vericut simulations was developed. 

Vericut Setup 

Vericut is used for generating the scan path and simulating the motion of the scanner to check 

for collisions and proper scan coverage.  A model of the scanner head itself as well as a model 

representing the scanning beam measurement range were added to the model of the machine 

as shown in Figure 59.   



98 

 

 

 

Figure 59: Simulation of In-machine Scanning with Vericut 

To indicate when the scanner is collecting measurements, the visibility of the scanning beam 

measurement range model is linked with the M commands that are used to turn the 

measurement trigger on and off.  In the experiments done on the PAMA, the coolant signal was 

repurposed to trigger the scanner turning on and off with the commands M98 and M9. The 

default within Vericut is for M8 and M9 to control the coolant signal while M98 calls a subroutine.  

Therefore, for the simulation, all program calls to M98 were re-routed to the M8 command by 

adding a substitute entry under the Advanced Control Options panel under Machine/Control.  

The M8 and M9 commands were also modified in the G-code processing panel (They are found 

under ‘States’) by right clicking on the ‘Coolant On/Off’ command, selecting ‘Add/modify’ and 

then selecting SetComponentVisibility, and setting the Value override to either 3 or 0 for turning 

on or off the visibility respectively, and the Text override value to the name of the model for the 

laser measurement range in the model tree. 

Scan Path Generation 

Vericut is used for generating the scan path by loading models of the machine tool, the scanner, 

the part to be scanned, and the mount for the part. The position of the mount and the part on 

the mount should be as close as possible to their real world locations to minimize the amount of 

manual correction. The position and orientation must be estimated prior to calibration, so it is 

best to mount the scanner aligned with the spindle angle of 0. After calibration the 

transformation identified can be updated in Vericut to improve the accuracy of the simulation. 

The steps for generating the scan path using Vericut are as follows: 
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1. Use the Manual Data Input mode (MDI) to jog the machine in Vericut such that the center 
of the scanner’s measurement range is lined up with the leading edge of the desired 
feature and record the axis positions to the NC Block Entry list in the MDI window using 
‘Save Location to List’. Figure 60 shows an example waypoint list being created using the 
Vericut MDI. 
 

 
Figure 60: Waypoint List Creation in Vericut MDI 

2. Jog the machine in Vericut such that the center of the scanner’s measurement range is 
lined up with the trailing edge of the desired feature and record the axis positions to the 
NC Block Entry list.  For each scan path segment, the machine motion should be limited 
to a single axis. 

3. Repeat the process for each scan path segment. 
4. If necessary, add waypoints to prevent collisions by entering a keyword such as ‘noscan’ 

in the text entry box and adding just before the waypoint with the ‘Add to List’ button. 
5. For scanning large rectangular areas, instead of recording each start and end point 

directly, first add a keyword such as ‘areascan’ to the list to indicate the rectangular area 
input, then record three positions: the start and end point of the first pass across one end 
of the rectangular area, and the end point of the final pass (the adjustment between the 
two end points should be a change in a single axis perpendicular to the axis used for the 
scan pass segments themselves) 

6. If the orientation of the scanner needs to be changed, add a spindle rotation command 
of the form SPOS=[angle], with a numeric value of the angle used in place of [angle]. 

7. Save the list to a text file from the MDI. 
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8. Open the EditScanPath.m matlab file and edit any parameters needed as detailed in the 
description of this function.  Specify the file path to the text file generated in the MDI and 
the base filename for the output files. 

9. Run EditScanPath.m.  This will generate four files with names based on the output file 
base name and different endings as follows: 

a. [BaseName]GCode.MPF: File to be loaded on the machine to run continuous 
scanning (suitable for either encoder or velocity modes) 

b. [BaseName]DiscGCode.MPF: File to be loaded on the machine to run discrete 
scanning. 

c. [BaseName]PosFile.csv: File to be used by scanning acquisition code if scanning in 
a continuous mode. 

d. [BaseName]DiscPosFile.csv: File to be used by scanning acquisition code if 
scanning in discrete mode. 

10. Either of the generated .MPF files can be loaded into the Vericut simulation by right 
clicking ‘NCPrograms’ in the project tree and selecting the file.  This can then be run to 
test for any collisions after the path is edited with intermediate scan passes for 
intermediate scan passes for rectangular areas and any additional segment extensions for 
acceleration/deceleration. 

11. The code should be verified on the actual machine with the speed turned down and the 
scanning head observed carefully for any potential collisions the first time it is run.  If any 
corrections need to be made, use the MDI and re-open the saved .txt file to edit point axis 
commands as necessary, then repeat steps 7-11. 

 

4.3.3.1 Formulation for a Single Virtual Gage 

Let 𝑟𝑖 be the ith point in the point set, S, that represents a planar surface on a part. After the rigid 

body transformation, T, is applied, the shortest distance from 𝑟𝑖 to some plane, A, with equation, 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 is given by, 

 

𝑒𝑖 = [𝑎 𝑏 𝑐 𝑑]𝑇 [𝑟𝑖
1
], (72) 

With small angle assumptions, a rigid body transformation can be written as, 

 

𝑇 = [

1 −𝛼 𝛽 ∆𝑥
𝛼 1 −𝛾 ∆𝑦

−𝛽 𝛾 1 ∆𝑧
0 0 0 1

], (73) 

where 𝛼, 𝛽 and 𝛾 are the roll, pitch yaw angles in radian for angular motion and ∆𝑥, ∆𝑦 and ∆𝑧 

describe linear motion. We define Ω as the set of all rigid body transformations where −𝛿𝑟 ≤

 𝛼, 𝛽, 𝛾 ≤ 𝛿𝑟 and −𝛿𝑡 ≤ ∆𝑥, ∆𝑦, ∆𝑧 ≤ 𝛿𝑡 (the angular rotations are limited by 𝛿𝑟 and the 

translations are limited by 𝛿𝑡), shown in Figure 61. 
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A 3-D virtual gauge problem that attempts to make plane A, a support plane for S at a minimum 

distance of 𝜀 from it while minimizing the distance of the farthest point in S from it can be 

expressed as a constrained min-max linear programming problem, 

 
min
𝑇∈Ω

𝑞  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 ≤ 𝜀 ≤ 𝑒𝑖 ≤ 𝑞, ∀ 𝑟𝑖 ∈ 𝑆  (74) 

where 𝑞 is the target function as well as an upper bound of all the distance of points  𝑟𝑖 in S from 

A, and 𝜀 is the desired ‘clearance from’ or ‘allowance for’ the gauge to the point set as shown in 

Figure 62. 

4.3.3.2 The multiple virtual gauge problem 

 

Figure 61 A single homogeneous transformation matrix rigidly displaces the point-sets so that 
their corresponding gage planes become supporting 

For a part with multiple virtual gages specified, a single homogeneous transformation matrix, T, 

is used to simultaneously displace (rotate and translate) all the point sets so that their 

correspoding gage planes become supporting.  This is shown in Figure 62.  

 

Figure 62 The optimized rigid body transformation is found by minimizing the maximal 

distance. 

In an n-gauge problem we have n pairs of point sets and gage planes {𝑆𝑖, 𝑝𝑖}, 𝑖 = 1, 2, … 𝑛. The 

distance 𝑒𝑖,𝑗 of the jth point, 𝑟𝑖,𝑗 in ith point-set, 𝑆𝑖 to the ith gauge plane, 𝑝𝑖 is given by: 

  𝑒𝑖,𝑗 = 𝑝⃑𝑖
𝑇
𝑇 [

𝑟𝑖,𝑗
1

] ≤

    𝑞𝑖, 
 (75) 



102 

 

 

where 𝑞𝑖 represents an upper bound on 𝑒𝑖,𝑗,  and 𝑝⃑𝑖
𝑇

= [𝑎𝑖 𝑏𝑖 𝑐𝑖 𝑑𝑖] is the coefficient vector 

of the ith gauge plane, 𝑝𝑖 with plane equation 𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖𝑧 + 𝑑𝑖 = 0, where 

‖[𝑎𝑖 𝑏𝑖 𝑐𝑖]
𝑇‖ = 1.  

The algorithm seeks to minimize the weighted sum of n distance upper bounds,  

 

min
𝑇∈Ω

∑𝑓𝑖𝑞𝑖

𝑛

𝑖=1

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 ≤ 𝜀𝑖 ≤ 𝑒𝑖,𝑗 ≤ 𝑞𝑖 ∀ 𝑟𝑖,𝑗 ∈ 𝑆𝑖, 𝑖 = 1, …𝑛 (76) 

where 𝑓𝑖,  the weighting coefficient for the distance measure, 𝑞𝑖  of the ith virtual gage has 

elements 𝑓𝑗 ≥ 0, 𝑗 = 1~ 𝑛  and  𝜀𝑖 is the desired clearance specified for the ith gauge. 

The linear program of Eq. (5) is bounded because Ω, the domain of its decision space, is bounded. 

If the linear programming problem is found to be infeasible, there are two possible reasons: a) 

the infeasibility is due to insufficient material on the part or b) Ω, the limitation on allowable 

transformations T is restricting the algorithm for obtaining a feasible solution. The reason for the 

infeasibility can be verified by examining the Lagrange multipliers of the constraints at 

termination. If any of the constraints that correspond to the limits imposed by Ω  have non-zero 

values, then one can attribute the infeasibility due to restricting the set of feasible rigid-body 

transformation. The situation can be resolved either by relaxing Ω or by using a sequential 

programming approach (updating the problem linear program at the current value of T and 

restarting the optimization).  In none of the constraints are associated with Ω, then the 

infeasibility is due to dimensional defects (e.g., insufficient material) to satisfy all the gages.  In 

the context of the casting metrology problem described earlier, one can choose to reduce 

clearances or machining allowance requirements, relax constraints post by gages deemed less 

important than other, or reject the casting.   

 

Figure 63 (a) No solutions possible because of a dimensional defect; (b) In a multi-gage 
problem, when min-max objectives are used, feasible optimal solutions are found even when 

unbounded displacements (here in the vertical direction) are possible. 
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4.3.3.3 Constructing locator frames for point-sets 

As mentioned earlier, the virtual gage integrates the gage planes with sample data (point-cloud) 

from the physical part.  The gage formulations are extracted from CAD models and it is necessary 

to create compatible reference frames between the point-cloud data and the CAD model.  Shown 

in Figure 64 is an example of CAD model with its reference frame and location faces identified.  

In this version of the implementation of the software, we only use a 3-2-1 location scheme to 

identify three orthogonal planes that serve as primary, secondary and tertiary data planes.  

 

Figure 64 Nominal locator frame with respect to the CAD model; (b) virtually located CAD 
model in point-cloud data scanned from the location surfaces of a fixture. 

 

First, point data that corresponds to location planes is extracted for the point-cloud. For example, 

if the point cloud is a fixture constructed with locator buttons, e.g., Figure 64(b), three separate 

location surfaces (Z1, Z2, Z3,) provide data for fitting the primary datum or locating plane which, 

by convention, is selected as the XY plane of the reference frame that defines its z-direction. 

Likewise, the XZ-plane and YZ-plane are the secondary and tertiary datum reference, 

respectively. Each of these locator planes are obtained by identifying best-fit support planes for 

their corresponding point set. The planes are identified sequentially, with the primary (XY) plane 

being identified first, the secondary (XZ) plane next with the additional constraint that it is 

perpendicular to primary location plane, and finally the tertiary (YZ) plane is identified with 

constraints added to ensure that it is perpendicular to the other locator planes. 

The primary datum plane, 𝑎𝑧𝑥𝑖 + 𝑏𝑧𝑦𝑖 + 𝑐𝑧𝑧𝑖 + 𝑑𝑧=0 is  obtained by using the point sets 

associated with the location surfaces of the primary datum and finding the best supporting plane 

with the following  non-linear optimization program: 

 
𝑚𝑖𝑛
𝑝⃑𝑧,𝑑𝑧

max ( 𝑝⃑𝑧
𝑇

∙ 𝑟𝑖 + 𝑑𝑧) 𝑠. 𝑡.  𝑝⃑𝑧 ∙ 𝑟𝑖 + 𝑑𝑧 > 0; ‖𝑝⃑𝑧‖ = 1 ∀𝑖, (77) 

where 𝑝⃑𝑧
𝑇

= [𝑎𝑧 𝑏𝑧 𝑐𝑧] is the normal to the identified plane and 𝑑𝑧 locates it in space and 𝑟𝑖 

represents a point in the point-sets associated with the primary location plane. The above 

optimization problem can be linearized and solved as a sequential linear program by 

preprocessing the data (For example, setting up the search for the optimal support plane is as a 

small perturbation on the best-fit least square plane for the given data). It should be noted that 
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this formulation can be reduced to the LP formulation given in Eq. (3).  Additionally, because we 

are searching for a support plane, the point-set can be reduced (thus reducing the number of 

constraints), by only retaining the points on the convex hull of the point-set.  

After the primary datum plane is fitted, the secondary datum plane can be obtained by exactly 

the same formulation given in Eq. (6) but with the addition of a constraint to enforce the 

perpendicularity requirement between the identified primary datum and the secondary datum. 

Thus, we have the following constrained optimization problem: 

 
min
𝑝⃑𝑦,𝑑𝑦

𝑚𝑎𝑥(𝑝⃑𝑦
𝑇

∙ 𝑟𝑗 + 𝑑𝑦) 𝑠. 𝑡.  𝑝⃑𝑦 ∙ 𝑟𝑗 + 𝑑𝑦 > 0;  ‖𝑝⃑𝑦‖ = 1; 𝑝⃑𝑦
𝑇

∙ 𝑝⃑𝑧 = 0 ∀𝑗  (78) 

where  𝑝𝑦
𝑇

= [𝑎𝑦 𝑏𝑦 𝑐𝑦] is the normal to the identified secondary normal, and 𝑟𝑗 represents 

a point in the point cloud from the surfaces associated with the secondary location plane. 

The normal vector of the tertiary datum plane is fixed as it must be the cross product of 𝑝⃑𝑦 and 

𝑝⃑𝑧, i.e, 𝑝⃑𝑥 = 𝑝⃑𝑦 × 𝑝⃑𝑧 . The optimization of the tertiary plan can then written as: 

 
min
𝑑𝑥

max
𝑘

𝑑𝑥 𝑠. 𝑡.  𝑝⃑𝑥 ∙ 𝑟𝑘 + 𝑑𝑥 > 0 ∀𝑘 (79) 

where 𝑝⃑𝑥 = 𝑝⃑𝑦 × 𝑝⃑𝑧, 𝑝⃑𝑥
𝑇

= [𝑎𝑥 𝑏𝑥 𝑐𝑥] is the normal vector of the virtual X-plane and 𝑟𝑘 

represents a point in the point cloud of the X-locators. 

After three datum planes are fitted, the locator frame can be constructed. The origin of the frame 

is given by solving three plane equations, 

 

[

𝑜𝑥

𝑜𝑦

𝑜𝑧

] = − [

𝑎𝑥 𝑏𝑥 𝑐𝑥

𝑎𝑦 𝑏𝑦 𝑐𝑦

𝑎𝑧 𝑏𝑧 𝑐𝑧

]

−1

[

𝑑𝑥

𝑑𝑦

𝑑𝑧

] (80) 

 

A coordinate system can be represented by a 4 by 4 homogeneous transformation matrix (HTM). 

The locator frame identified above, in the coordinate systems of the point sets (scanner’s 

coordinate system) is given by, 

 

𝐶𝐿
𝑆 = [

𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑜𝑥

𝑏𝑥 𝑏𝑦 𝑏𝑧 𝑜𝑦

𝑐𝑥 𝑐𝑦 𝑐𝑧 𝑜𝑧

0 0 0 1

] (81) 

 

Suppose, the solid model is constructed in a modeling frame, 𝐶𝐿
𝐶  the with the same primary, 

secondary and tertiary locator surfaces, then, located in the point-cloud data reference system, 

it is a 4 by 4 identity matrix.  Brought into the point-cloud reference frame (scanner frame), it 
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would locate the part at its origin with its locator surfaces, aligned with the principal (XY, YZ, and 

ZX) planes (see Figure 65 (a)). The HTM, 𝐻 which makes the point-cloud locator frame, 𝐶𝐿
𝑆 , 

identified by the aforementioned procedure coincident with the locator frame attached to the 

model is given by:  

 

𝐻 × 𝐶𝐿
𝑆 = 𝐶𝐿

𝐶 = 𝐼4 (81) 

Thus,  

 

𝐻 = (𝐶𝐿
𝑆)−1 (82) 

Therefore, HTM H bring the point cloud into alignment with the CAD model frame with the same 

datum planes.  This is shown in Figure 65(b). 

 

Figure 65 (a). The attachment of a locator frame to the point set model.  (b) The point cloud 
aligned with the part CAD model. 

 

4.3.3.4 Data sampling and filtering  

After the point cloud is aligned with the part CAD model using the procedure discussed in the 

previous section, the point cloud can be segmented in to point-sets, such that each set is 

associated with a virtual gage.  Each of these point-sets can then be processes to remove 

redundant points from the set.  
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Figure 66 (a) Schematic segmentation of point-cloud data using sampling volumes (b) An 

example of extracting a point set for a virtual gage from the part’s point-cloud.  

Data segmentation:  The extraction of points from the point-cloud to form a point-set for a virtual 

gage is accomplished by creating sampling volumes and classifying (deciding whether a point is 

in or out) the points against these volumes.  These sampling volumes are constructed with the 

part CAD model (because the CAD environment has the appropriate tools to create and locate 

them relative to a face in part CAD model that will become a gage plane in the virtual gage). 

Besides identifying the points to be included in the point-set for a virtual gage, the sampling 

volumes are used for the removal of scanning artifacts (especially those produced near the edges 

of a surface during scanning). Figure 66(a) schematically depicts the use of sampling volumes to 

extract point-sets from the point cloud of the part and Figure 66(b) provides an example of the 

implementation of the sampling volume concept. In the current implementation, only 

rectangular boxes can be used as sampling volumes.  

Point set thinning with convex hulls: The constrained optimization algorithms that implement the 

virtual gages are computationally intensive. Dense point sets generate a large number of 

constraints for a virtual gage, many of which are redundant. To reduce the computational time 

required to check a virtual gage, we reduce the number of constraints by thinning down the 

associated point-sets by identifying and eliminating redundant points.  

Since our virtual gages essentially identify optimal support or classifying planes for point sets (i.e., 

planes that define half-spaces that either contain all the points or none), convex closures of the 

point-set play an important role in characterizing them relative to the gage planes. Therefore, 

only those points involved in the definition of a convex closure or hull (i.e., its vertices) need be 

considered. Other points, interior to the closure/ can be eliminated without fear of changing any 

metrics relative to the gage planes. 

The convex hull of a finite point set, 𝑆 is defined by the convex combination, 
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𝐶𝐻(𝑆) = {∑ 𝛼𝑖𝑥𝑖
|𝑆|
𝑖=1 |(∀𝑖: 𝛼𝑖 ≥ 0) ∧ ∑ 𝛼𝑖

|𝑆|
𝑖=1 = 1} (83) 

where 𝑥𝑖  is the ith point in 𝑆.  

A finite point set has unique convex hull, whose vertices, 𝑆′ are the minimal possible subset of 𝑆 

that share the same convex hull. Thus, we have 

 

𝐶𝐻(𝑆) = 𝐶𝐻(𝑆′) (84) 

All extremal (minimum or maximum) distances between the 𝑆 and a support or classifying plane 

are defined by points in 𝑆′  

Let 𝑆 be a finite point set in 3-D space, and 𝑆′ be its subset consisting all vertices of 𝐶𝐻(𝑆). 

Assume there are |𝑆′| vertices in 𝐶𝐻(𝑆), which is also the number of points in 𝑆′. Any point, 𝑢 ∈

𝑆 ∉ 𝑆′, i.e., interior  to 𝐶𝐻(𝑆) can be expressed by the convex combination of all points in 𝑆′, 

 

𝑢 = {∑ 𝛽𝑖𝑦𝑖
| 𝑆′|

𝑖=1 |(∀𝑖: 𝛽𝑖 ≥ 0) ∧ ∑ 𝛽𝑖
|𝑆′|

𝑖=1 = 1}, (85) 

where 𝑦𝑖 ∈ 𝑆′ ∀𝑖. 

If all points in 𝑆′ lie on the same side of a given plane with plane equation, 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 =

0, we have, 

 

∀𝑦𝑖 ∈ 𝑆′: 𝑦𝑖
𝑇 ∙ 𝑛̂ + 𝑑 > 0, (86) 

where 𝑛̂ = [𝑎 𝑏 𝑐]𝑇 is the normal vector of the plane. 

Substitute 𝑢 into the plane equation to check if any given point 𝑢 inside of 𝐶𝐻(𝑆) locates on the 

same side of the plane,  

 

𝑢𝑇 ∙ 𝑛̂ + 𝑑 = {∑ 𝛽𝑖(𝑦𝑖
𝑇 ∙ 𝑛̂ + 𝑑)

| 𝑆′|

𝑖=1 |(∀𝑖: 𝛽𝑖 ≥ 0) ∧ ∑ 𝛽𝑖
|𝑆′|

𝑖=1 = 1} (87) 

According to equation 87,  𝑦𝑖
𝑇 ∙ 𝑛̂ + 𝑑 > 0 and since by definition all 𝛽𝑖 are positive, 𝑢𝑇 ∙ 𝑛̂ + 𝑑 

imust also also positive. Therefore, 𝑢 and all vertices are on the same side, or, if the vertices of 

the convex hull are on the same side of a plane, every point inside the convex hull is also on the 

same side. 

Also, the farthest and nearest points in a finite point set, 𝑆, from a support or classifying plane 

must be a vertex of its convex hull, 𝐶𝐻(𝑆). The proof is given below. 

A point inside of the convex hull can be expressed by the convex combination of the vertices, 
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𝑢 = {∑ 𝛽𝑖𝑦𝑖
| 𝑆′|

𝑖=1 |(∀𝑖: 𝛽𝑖 ≥ 0) ∧ ∑ 𝛽𝑖
|𝑆′|

𝑖=1 = 1}, (88) 

where 𝑦𝑖 ∈ 𝑆′ ∀𝑖. 

The distance from the point to a given plane, 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 can be written as, 

 

 

𝑢𝑇 ∙ 𝑛̂ + 𝑑 = {∑ 𝛽𝑖(𝑦𝑖
𝑇 ∙ 𝑛̂ + 𝑑)

| 𝑆′|

𝑖=1 |(∀𝑖: 𝛽𝑖 ≥ 0) ∧ ∑ 𝛽𝑖
|𝑆′|

𝑖=1 = 1} > 0 (89) 

 

where 𝑛̂ = [𝑎 𝑏 𝑐]𝑇 is the normal vector of the plane. 

Let 𝑦𝑚 and 𝑦𝑛 be the farthest and nearest vertices from the given plane. The upper bound of the 

distance is given by 

 
𝑢𝑇 ∙ 𝑛̂ + 𝑑 ≤ {∑ 𝛽𝑖(𝑦𝑚

𝑇 ∙ 𝑛̂ + 𝑑)
| 𝑆′|

𝑖=1 |(∀𝑖: 𝛽𝑖 ≥ 0) ∧ ∑ 𝛽𝑖
|𝑆′|

𝑖=1 = 1}

= 𝑦𝑚
𝑇 ∙ 𝑛̂ + 𝑑 

(90) 

Similarly, the lower bound of the distance can be obtained. We have, 

 

0 < 𝑦𝑛
𝑇 ∙ 𝑛̂ + 𝑑 ≤ 𝑢𝑇 ∙ 𝑛̂ + 𝑑 ≤ 𝑦𝑚

𝑇 ∙ 𝑛̂ + 𝑑 (91) 

 

 

Figure 67 A point set of about 20K points, filtered to 87 points using a convex hull filter. 

Thus, when we are working with gage planes and point sets for our virtual gages, only the vertices 

of the convex hull need be considered in the virtual gauge algorithms. In general, we expect 

|𝑆′| ≪ |𝑆|, and the computing of 𝐶𝐻(𝑆) is computationally much less intensive than solving the 

constrained optimization problem of the virtual gages. Thus, we expect to greatly reduce the 
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computational effort by only using the vertices of convex hulls of the point-sets instead of the 

entire point set for the implementation of the virtual gage algorithm. Figure 67 shows the use of 

a convex hull filter in replacing the point-set extracted by a sampling volume.  

 

Then, two methods have been developed to achieve compensated tool path based on the HTM 

that generated from Virtual gage. First approach, the software read the existing program and 

only change the work offset; with second approach, the NC program will be modified to achieve 

the adaptive tool path. 

 

Automated work offset modification 

The system was demonstrated on a 3+1 axis CNC machine set-up with rotating table. A simplified 

schematic of the machine model with axes definitions is shown in Figure 68. In such systems, 

each face of table rotation typically comprises of a unique work offsets saved in different G codes 

(G5X series such as G55, G56, etc. or G5XX series such as G506, G507, etc. depending on the type 

of the machine). The new cutting tool positions are transformed from 𝑋1 𝑌1 𝑍1 to 𝑋2 𝑌2 𝑍2 for a 

table rotation of 𝜃 using a standard Y rotation matrix as given by the following equation:  

  

[
𝑋2

𝑌2

𝑍2

]  = [
cos(𝜃) 0 − sin(𝜃)

0 1 0
sin(𝜃) 0 cos(𝜃)

] ∗  [
𝑋1

𝑌1

𝑍1

]                                          (92) 

 

For a complex part with multiple faces that require machining in different radial directions, it is 

evident that different set of offset values are required for different faces as the rotation about Y 

changes the cutting tool position in Z and X directions. To implement this, the offset values 

calculated using virtual gage block analysis are first transformed into the machine space using 

the following equation: 

 

[
𝑋𝑐𝑜𝑟

𝑌𝑐𝑜𝑟

𝑍𝑐𝑜𝑟

]  = [
cos(𝑏𝑡𝑎𝑏) 0 − sin(𝑏𝑡𝑎𝑏)

0 1 0
sin(𝑏𝑡𝑎𝑏) 0 cos(𝑏𝑡𝑎𝑏)

] ∗ [

𝑥𝑐𝑜𝑟

𝑦𝑐𝑜𝑟

𝑧𝑐𝑜𝑟

]                                 (93) 

 

btab is the table rotation value for the offset being compensated and 𝑏𝑡𝑎𝑏 rotation matrix maps 

the linear translations from virtual gage block to the corrected table values as  𝑋𝑐𝑜𝑟 𝑌𝑐𝑜𝑟 𝑍𝑐𝑜𝑟. 

The virtual gage block values are entered in 𝑥𝑐𝑜𝑟, 𝑦𝑐𝑜𝑟, 𝑧𝑐𝑜𝑟. The corrected table values are then 

added to the existing work offsets for the part, if any, and the values are then mapped to the 

table values with another transformation using the standard Y rotation matrix with the 𝑏𝑐𝑜𝑟 as 𝜃 

to account for the Y rotation from virtual gage block analysis. The final offset compensation 

equations for the 3+1 CNC axis machine setup are given below: 
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[
𝑋𝑛𝑒𝑤

𝑌𝑛𝑒𝑤

𝑍𝑛𝑒𝑤

] =  [
cos(𝑏𝑐𝑜𝑟) 0 − sin(𝑏𝑐𝑜𝑟)

0 1 0
sin(𝑏𝑐𝑜𝑟) 0 cos(𝑏𝑐𝑜𝑟)

] ∗ ([
𝑋𝑐𝑜𝑟

𝑌𝑐𝑜𝑟

𝑍𝑐𝑜𝑟

] + [
𝑋𝑜𝑙𝑑

𝑌𝑜𝑙𝑑

𝑍𝑜𝑙𝑑

])                          (94) 

𝐵𝑛𝑒𝑤 = 𝑏𝑐𝑜𝑟 + 𝐵𝑜𝑙𝑑 

𝑋𝑛𝑒𝑤, 𝑌𝑛𝑒𝑤, 𝑍𝑛𝑒𝑤, and 𝐵𝑛𝑒𝑤 are the compensated offsets, and 𝑋𝑜𝑙𝑑, 𝑌𝑜𝑙𝑑, 𝑍𝑜𝑙𝑑, and 𝐵𝑜𝑙𝑑 are the 

original offsets. 

 

 
Figure 68 Simplified schematic showing different axes on the machine. 

 

 

The program is written in Matlab. When compiled, the program prompts the user to input values 

from the virtual gage block including 𝑥𝑐𝑜𝑟, 𝑦𝑐𝑜𝑟, 𝑧𝑐𝑜𝑟 and bcor values and the existing NC program. 

The program then stores the values in corresponding matrices and searches for any existing work 

offsets starting with G5X…X series used in the program and its line number. A snippet of the 

program performing the above two functions is shown below: 
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New frame variables are defined in the program to be added in the additional lines of the 

modified NC program. Therefore, the program checks for any conflicting names in using variables 

names in which case the variable names should be changed. For example, UOLDWO represents 

saving the old work offset temporarily during the program implementation. A snippet from the 

program that introduces the new variables and scans the entire NC program for repetitions and 

conflicting variables is shown below: 
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The definition of temporary variables and saved offsets provides the basis for next 

implementation of the insertion of the offset calculation matrix equations in the modified NC 

program. The principal concept of this software is not modify the existing lines of G-code in the 

program but introduce easily distinguishable additional lines in the program for the calculations 

to occur in the NC machine controller. Therefore, the required variables should be defined in the 

modified NC program before the machining commands are run on the controller. Therefore, the 

frames are initialized and defined as follows: 
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The program then prints additional lines to implement offset calculations in controller to the 

existing NC program and then saves the new .MPF file in a user specified location with a new 

name. The snippet of the program with this implementation is shown below: 
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The example program shown in above utilizes the variables that are specific to the Siemens 

Sinumerik controllers. The program can be modified by changing the variable names to 

correspond to controllers made by different manufacturers. 

 

Regeneration of NC Program using Siemen’s NX Journal  

NX journaling is a tool used by engineers to automate certain procedures. A journal is similar to 

a macro but involves programming, usually written with Visual Basic (VB). However, NX journaling 

is not limited to VB as the programming language. Programming languages such as C#, C++, Java, 

or Python could also be utilized but VB is the most commonly used program. A typical journal 

creation is very similar to creation of a “macro” in NX software. A macro option in NX allows 

recording a series of operations performed in the CAD space on the file to a file that can be saved. 

Typically, the user has to begin recording the journal and then perform the desired procedures. 

After the journal has been first created, it can be modified to fit any desired function or model. 

Journals are also run similar to macros. They must be run by the user and be supplied with any 

requested inputs as programmed. 

In this project, a journal was created in order to transform the tool paths of a CAD file created in 

a manufacturing or CAM module of Siemens NX software. The method assumes that the user 

utilizes NX software to create tool paths and generates the final NC program using appropriate 

post processor files. The journal transformation is a rigid body translation and rotation of the 

defined tool paths based on the origin of the machine co-ordinate system defined in the CAD 

model. The transformation utilizes the TransformObject() function available in NX software. After 

transformation, the journal also performs the post processing of the transformed tool paths 

based on the post files selected by the user. Therefore, this method assumes that the user has 

all required post files to obtain the final corrected NC program. This method is highly adoptable 

to any multi-axes CNC machine set-up if the tool paths are created and post processed using 

Siemens NX software. 

In this method, the journal program is created using Visual Basic programming language by 

utilizing the pre-defined functions and syntax that is compatible with Siemens NX software. The 
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program first gathers the responses of the user to save the transformation values including X, Y, 

Z, translations and X, Y, Z rotations. A typical programming syntax for collecting the X translation 

from user reads as below: 

 
The program then collects all the defined toolpaths or “NX Program Operations”. After the 

collection of all operations in one array, toolpath transformations are performed using the 

defined function provided for NX programming applications called transformBuilder.Commit(). 

The toolpaths are then also post processed using the journal. 

 

 

 

 

 
 

4.3.4 Users & Use Cases 

The in-machine scanning process was tested using the PAMA machine at the Caterpillar Tech 

Center to scan a small test casting.  The 3D point cloud data generated was then utilized by the 

virtual gage software. The part was artificially perturbed by a known amount from the nominal 

mounting location and the generated 3D point cloud was used to identify the offset in position 

and orientation of the part with respect to the nominal mounting location and modifications to 

the machining code were generated using the adaptive machining software components. 
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The scan data of the raw casting is given in the scanner coordinate system, which is different 

from the solid CAD model’s reference coordinate. To make two coordinate systems coincide with 

each other, six locators, which are fixed on the tombstone to clamp the casting, are scanned, and 

a locator frame can be fitted. Three Z-locators are placed between the tombstone and the 

casting; two Y-locators hold the casting from the beneath, and the X-locator clamps the casting 

on the left. The origin of the fitted locator frame locates at the corner of the solid model. 

The setup of the clamps and six locators is shown in Figure 69.  In order to examine if the 

algorithm can capture linear displacement errors along X and Y-axes, spacers are placed between 

locator X1 and the casting as well as between the Y-locators and the casting to simulate the 

translational errors. Similarly, a small angular error about the Y-axis and linear error about Z-

direction are generated by the spacers between locator Z1, Z2 and the casting. 

 

Figure 69 (a) The setup of the wax casting clamped on the machine table; (b) Spacers placed 
between locators and the casting. 

Program 1 extracts 13 point sets as shown in Figure 70(a) from the raw point-cloud data (see 

Figure 70(b)). Seven of the 13 surfaces including the top and side of the flange, two inner walls 

and two outer walls and the top of the tower(see Figure 70(b)) are checked against eight virtual 

gauge parameter sets listed in Table 1, which are obtained from the dimensional and the 

tolerance requirements of the final casting in Figure 71. 
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Figure 70 (a) 13 point sets extracted from the original data set; (b) 7 point sets used as 
constraints in the optimization procedure. 

 

Figure 71 GD&T requirements of the scaled part (side view); (b) Front view 

 

Table 19 Virtual gage parameter sets 

  
a b c d 

Top of 
flange 

0 0 1 -109.30 

Top of 
flange 

0 0 -1 111.50 

Side of 
flange 

0 1 0 -145.80 

Outer wall 1 1 0 0 -87.43 
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Outer wall 2 -1 0 0 12.42 

Inner wall 1 -1 0 0 75.62 

Inner wall 2 1 0 0 -23.48 

Top of 
tower 

0 0 1 -124.20 

 

The machine used in the test has three linear axes and one rotary axis, which only allows the 

table to rotate about Y-axis. Program 2 establishes a linear programming problem given by 

equation 95 and solves the optimal rigid body transformation with four degrees of freedom, 

 

𝑇 = [

1 0 𝛽 ∆𝑥
0 1 0 ∆𝑦

−𝛽 0 1 ∆𝑧
0 0 0 1

] (1) 

Where 𝛽 is restricted by the small angular assumption, −0.05 ≤ 𝛽 ≤ 0.05.  

The linear programming problem given by equation 95 can be written by,  

 

min
𝑇∈Ω

∑𝑞𝑖

8

𝑖=1

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 ≤ 𝑒𝑖,𝑗 ≤ 𝑞𝑖 , (96) 

where 𝑒𝑖,𝑗 and 𝑞𝑖 are defined in equation 96 

Program 2 returns a unique, optimal HTM for the 4-axis machine, 

 

𝑇∗ = [

1 0 −0.0267 −3.12
0 1 0 −3.09

0.0267 0 1 −7.19
0 0 0 1

] (97) 

In the last part of program 2, the effect of the optimal HTM is reviewed and visualized. 𝑇∗ rotates 

the casting by -0.0267 radian (-1.298 degrees) along Y-axis, which is close to the angular offset, 

generated by the spacers placed between spacer Z1, Z2 and the casting. The point set, which 

represents the top of the flange, is tilted, but the effect of the rigid body transformation rotates 

the point set back to the horizontal position, shown in Figure 72 and Figure 73. The whole point 

set is translated -3.1171 and -3.0908 mm along X and Y direction, which are close to 3.00 mm, 

the thickness of the spacers placed between the casting part and the Y-spacers. The top of the 

flange is squeezed by two gauges, 𝑧 = 110.4 ±
𝜖

2
 mm, where 𝜖 is the minimal possible thickness 

of the point set along Z-axis.  
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Figure 72 (a). Front view of the seven point sets before 𝑻∗ is applied; (b) Front view of the 
seven point sets after 𝑻∗ is applied. 

 

Figure 73 (a). Side view of the point set that represents flange top before 𝑻∗ is applied; (b) 
Side view of the point set that represents flange top after 𝑻∗ is applied. 

Similarly, the point set for the top face of the neck must lie above the cutting line of the top face, 

which is already satisfied. Figure 74 shows how 𝑇∗ compensates for the angular error about Y-

axis and makes the point set approximately sit on the horizontal plane, z=130 mm.  

 

Figure 74 (a). Side view of the point set that represents tower top before 𝑻∗ is applied; (b) 
Side view of the point set that represents tower top after 𝑻∗ is applied. 

Also, four virtual gauges, shown as the vertical lines in Figure 75 are deployed to check two walls’ 

thickness. By applying 𝑇∗, the point sets moved to the new positions without touching the virtual 

gages. It shows that the requirements on thickness can be satisfied. 
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Figure 75 (a). Side view of the point sets that represents four walls before 𝑻∗ is applied; (b) Side 
view of the point sets that represents four walls after 𝑻∗ is applied. 

The optimal HTM shown in Eq. (24) suggests how to adjust machining coordinate frame, which is 

done by modifying the machining paths in the G-code.  

 

Then the HTM will be imported into the two methods that generate adaptive tool path. 

 

Automated work offset modification 

The offset calculation was first implemented on a small prototype with all but one face of the 

prototype has an inclination of 𝜃 = 3° around Y-axis. The picture of CAD files of designed small 

prototype, the to-be machined stock, and the table-fixture-part set-up in the machine CAD model 

is shown in Figure 76.  

 

 
Figure 76 Scaled part CAD and the machining set-up 
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Figure 77 (a) Scaled model wax casting clamped on the machine table, (b) Spacers placed 

between locators and the casting to simulate the part transformation. 

 

Table 20 provides the work offset values before and after compensation that are required to 

machine the part. The ideal work offsets before compensation are values obtained during the 

tool path generation in the CAD/CAM software and after touch probing the part location in the 

machine workspace by the operator. The part was designed to be machined at two different table 

rotation values i.e., B = 0° and B = 357° because of the 3° inclination face. The after compensation 

values were calculated based on the displacements provided by the virtual gage analysis matrix 

as shown below: 

[

𝑥𝑐𝑜𝑟

𝑦𝑐𝑜𝑟

𝑧𝑐𝑜𝑟

] = [
3.033
4.438
2.072

]    and   𝑏𝑐𝑜𝑟 = -2.452° 

 

Table 20 Scaled part work offsets before and after compensation 

 
Before 

compensation 

 
After compensation 

 G506 G507  G506 G507 

𝑋𝑜𝑙𝑑 -129.99 -105.572 𝑋𝑛𝑒𝑤 -106.93 -82.177 

𝑌𝑜𝑙𝑑 951.168 951.168 𝑌𝑛𝑒𝑤 955.606 955.606 

𝑍𝑜𝑙𝑑 463.171 469.340 𝑍𝑛𝑒𝑤 470.249 475.201 

 

The offset calculations and its NC program correction are shown in Figure 78. The software adds 

additional lines of offset calculation equations with controller variables in the NC program so that 

the implementation can be materialized in the controller. The left snippet shows the original NC 

program and the right snippet shows the modified NC program. The additional lines added 
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between line N50 and N55 can be observed in the modified NC program. The rest of the program 

remained the same. 

  

 
Figure 78 Offset calculations implemented in the NC program. Left – original NC program and 

Right – corrected NC program with additional lines for offset compensation. 

Vericut Simulation 

The corrected NC program was later verified by performing a machining simulation in Vericut® 

software. A machine model is first constructed in the Vericut® space by importing the required 

CAD files of the machine components including table, fixture, and tools. The CAD files are then 

imported in to the virtual machine model in Vericut® software. Figure 79 shows the screenshots 

before and during the virtual machining process. Since a wax casting was utilized for scaled part 

implementation, the CAD file of the casting was considered as the stock file for virtual machining, 

as there were no significant differences between the scanned surfaces point cloud and actual 

surfaces because of the surface finish. However, the CAD file was transformed in the virtual space 

to reflect the real-world transformation of the wax part achieved by spacers as shown in Figure 

3(b).  The modified NC program was then loaded in to the software and used as input for virtual 

machining.   
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Figure 79 (a) Vericut® software view with the entire machine model set-up and the software UI, 

(b) During machining simulation using the corrected NC program. 

Figure 80(a) shows the differences in surface profile of the original CAD file to that of machined 

file. Blue represents excess material and red indicates gouged material. It can be observed that 

at 1 mm tolerance (Figure 80(b)), there are no differences in surface profiles and all surfaces are 

within the defined tolerance values. Moreover, the part was moved in all 6 degrees of freedom 

whereas the compensation was only performed in X, Y, Z and B angles. It is evident that the shown 

differences in the 0.2 mm tolerance profiles are because of the uncompensated X and Z rotation 

of the part. This predicted result match the 3D measured report in Figure 82. Therefore, it has 

been demonstrated that the virtual machining using the machine model and Vericut® software 

provides reliable outcomes in estimating the surface profiles after machining with the corrected 

NC program. 

 

 
Figure 80 Analysis of the machined stock compared to the designed CAD file. (a) Highlighted 

differences at 0.2 mm tolerance values, (b) Highlighted differences at 0.2 mm tolerance values. 

 

Regeneration of NC Program using Siemen’s NX Journal  

The journal method was implemented on a scaled part. As mentioned above, the requirements 

to implement the journal method in transforming the toolpaths and post processing the toolpath 

to G and M codes depends on the availability of the toolpaths in NX CAM module. As the original 
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NC program of the scaled part was defined and created using the Siemens NX software, the 

journal method was seamlessly tested on the scaled part. Figure 81 shows the screenshot of the 

NX software CAM module UI with the scaled part and the defined machining operations. The 

machining operations are highlighted on the CAD file. The shifted tool paths after executing the 

journal can be seen in the workspace. It has to be noted that the toolpaths are transformed 

instead of transforming the CAD file in this method. The transformed toolpaths are then post 

processed into G-code. 

 

 
Figure 81 Toolpath transformation after executing the journal in Siemens NX CAD/CAM 

software. The journal later post processed the toolpaths into G-code based on the user selected 
post processor. 

The developed system was validated experimentally by machining the part using the 

compensated G-code. The error map of the finished part was built by comparing the scan data 

and the nominal CAD model of the finished part. As shown in Figure 82, the translational and 

rotational offsets caused by the spacers are compensated. The feasibility of using virtual gage 

analysis to compensate workpiece variation is thus demonstrated. 

 

Figure 82 The error map of the finished part. 
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4.3.5 Inner wall thickness averaging using different target function 

Even the finished part satisfies all GD&T requirements, there is still a room to improve the 

algorithm. In Eq. (25), all virtual gages are considered equally important, and their weighting 

values in target function are all 1. For different purposes of optimization, one can add more 

variables and use different weighting values for different virtual gages. For example, if the target 

function aims to average the minimum inner wall thicknesses by sacrificing other gages of J-

groove, Eq. (25) can be modified to meet the requirement.  

A simplified case of averaging two parallel wall thicknesses controlled by two virtual gages is 

shown in Figure 83. The point sets are only allowed to move horizontally and the minimum wall 

thicknesses are controlled by 𝑞1 and 𝑞2, the shortest distances from the point sets to the 

corresponding virtual gages (two dashed lines). Equal minimum thicknesses for these two walls 

can be achieved by minimizing the thickness of the thicker wall, max(𝑞1, 𝑞2). In linear 

programming, we have, 

 
min

𝑥
𝑞′ (98) 

subject to 0 ≤ 𝑞𝑗 ≤ 𝑒𝑖,𝑗(𝑥), 𝑞𝑗 ≤ 𝑞′∀𝑖, 𝑗, where 𝑒𝑖,𝑗 is distance from the ith point in the jth point 

set to the jth virtual gage, 𝑞𝑗 is the lower bound of 𝑒𝑖,𝑗 and 𝑞′ is an upper bound of 𝑞𝑗.  

 

Figure 83 Wall thickness equalization problem controlled by two virtual gages. 

The optimal solution is given by 𝑞1,𝑜𝑝𝑡 = 𝑞2,𝑜𝑝𝑡 = 𝑞′
𝑜𝑝𝑡

 and average the wall thickness. The 

problem of wall thickness equalization can be generalized based on Eq. (25), 

 

min
𝑇∈Ω

[∑(𝑔𝑖𝑠𝑖

𝑛

𝑖=1

+ 𝑢) + ∑𝑓′
𝑗
𝑞′

𝑗

𝑘

𝑗=1

)] 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

−𝑢 ≤ −𝑠𝑗 ≤ 𝑒𝑖,𝑗 ≤ 𝑞𝑖∀ 𝑟𝑖,𝑗 ∈ 𝑆𝑖, 𝑖 = 1,…𝑛, 𝑞2𝑗−1, 𝑞2𝑗 < 𝑞𝑗
′ , 𝑗 = 1,… 𝑘  

 

(99) 

where 𝑔𝑖 is the non-negative weighting coefficient for the slack variable, 𝑠𝑖 of the ith virtual gage, 

𝑢 is the largest slack variable, 𝑓′
𝑗
 is the non-negative weighting coefficient for the jth wall 
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thickness pair to be equalized and 𝑞𝑗
′  is the upper bound for the distance measurements, 𝑞2𝑗−1 

and 𝑞2𝑗. 

For the unscaled part, the minimum inner wall thicknesses of the neck, left wing and right wing 

are checked against 12 virtual gages using distance measurements, 𝑞1~𝑞12. Therefore, six more 

variables, 𝑞′
1
~𝑞′

6
 are introduced, and 𝑘 = 6. 𝑓′

𝑗
 is selected to be 50 by trail and error. The 

optimal solution of Eq. (28) expressed in HTM is given by, 

 

𝑇∗ = [

1 0 −0.0026 0.49
0 1 0 −5.22

0.0026 0 1 −0.75
0 0 0 1

] (100) 

 

The HTM shown in Eq. (29) compensates the displacements of the part and average the inner 

wall thicknesses as shown in Figure 84. Each pair of parallel inner walls is predicted and listed in 

Table 21. The inner walls are more evenly distributed. The results demonstrate the possibility of 

introducing additional variables and constraints in linear programming problem to achieve 

different optimal objectives. 

 

Figure 84 Virtual gages, point sets and the machining allowance with wall thickness averaging 
(before and after compensation)  

 

Table 21 Predicted and measured inner wall thickness (mm) 

 

Inner wall Predicted (before) Predicted (after) 

Neck top 27.0 21.6 

Neck bottom 16.3 21.6 

Neck left 17.1 18.7 

Neck right 20.2 18.7 
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4.3.6 Software and System Requirements 

A CAD software (e.g. AutoCAD or ProE) is required for parameterization and visualization of the 
virtual gages. MATLAB with Computer Vision System Toolbox is necessary for running two 
programs, which are broken down into functions listed below. 

The implementation of modified NC program on the CNC machine requires a 

programmable CNC controller. In this project demonstration, Siemens Sinumerik 840 series 

controller was used. Sinumerik controller variables will be embedded in the final modified NC 

program to provide an operator hands-free approach to machine the part. Depending on the 

particular configuration used to modify the NC program, Siemens NX (v10.0) could also be 

required. 

To run the software, it must be compiled on a desktop or laptop PC. The software’s are 

written in a combination of programming languages and CAD-related software. For the NC 

program modification software, program was created using a proprietary programming language 

(MATLAB vR2016b). For the machining simulation, the system utilizes Vericut software and 

requires a defined CNC machine model with tool definitions and CAD files. 

 
 
4.3.6.1 List of the functions and Scripts 

1. EditScanPath.m 

The MATLAB script used to process the scan path waypoint list generated via the Vericut MDI 

includes the following parameters that should be set. Outputs are four files: a Position file 

and an NC program file for both discrete and velocity mode scanning 

a. filepath: This is the file path to the folder containing the waypoint text file.  Leave 

as empty if the matlab script is in the same folder. 

b. filename: This is the name of the waypoint text file generated with Vericut 

(excluding the .txt extension).  This is used as the base name for the other files 

generated by default, with differing endings added to each of the four files 

generated. 

c. on: This is a string specifying the M code used to turn on the trigger signal. 

d. off: This is a string specifying the M code used to turn off the trigger signal. 

e. speed: This is the desired feed rate of the machine while scanning in mm/s. For 

the testing done, this was set to 100 mm/s since this, together with the capture 

frequency of 1000Hz used resulted in scan line spacing of 100 microns, equal to 

the spacing of the sample points along the scan line. 

f. freq: This is the desired scan sample frequency in Hz.  Together with the machine 

speed, this determines the spacing between scan line samples. For the scanner 

model used, a frequency of 1000 Hz was found to be ideal, with larger frequencies 
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filling the buffer and requiring additional processing time, resulting in a total 

capture time similar to that needed using 1000Hz to capture the same input.   

g. batch: This is number of samples in each scan batch.  This should be based on the 

longest scan pass length + acceleration distance in combination with the scan 

sample spacing.  This has a minimum of 50 and a maximum of 15,000. 

h. buffer: This is the nominal buffer length in mm added to the ends of each pass to 

account for the acceleration and deceleration period as well as startup delay to 

ensure that the desired scan path segment is traversed while at constant velocity 

and while the scanner is measuring.  Experimentation on the PAMA indicated that 

the machine took around 0.3 seconds to reach the desired constant velocity of 

100mm/s, so a buffer of 30mm would be sufficient for the acceleration, but given 

the significant variation in startup delay this was increased to 50mm to ensure no 

loss of data in the desired range. 

i. maxscanlength: This is the length of the longest scan segment in mm.  Since scan 

batch sizes cannot be changed during execution of the program, this adds a pause 

in machine movement after shorter scan segments to ensure that the previous 

batch is complete before starting the next pass. Ideally, scan segments should be 

designed to all have similar length to reduce wasted time. 

j. discspacing: This is the desired spacing in mm of the measurements when in 

discrete mode.  There need to be enough measurements in each scan pass to 

result in unique alignment with the continuous data, so this will depend on the 

part size and uniqueness of features on the surface. For tests on the PAMA and 

the scaled part, a spacing of 10mm was found to work well. 

k. scannertransf: This is a 4x4 transformation matrix that gives the position and 

orientation of the scanner measurement frame with respect to the tool frame of 

the machine (end of spindle). For calibration scans, the value of this matrix does 

not matter as the raw data is used.  After calibration, the transformation matrix 

identified should be copied here. 

l. headercode: This is a text string including any NC code necessary at the beginning 

of the program to configure the machine. 

m. footercode: This is a text string including any NC code necessary at the end of the 

program to configure the machine. 

n. noscan: This is a string that specifies the keyword used to indicate collision 

avoidance waypoints in the scan path waypoint list generated in Vericut. 

o. areascan: This is a string that specifies the keyword used to indicate a three point 

specification of a rectangular area to be scanned in the scan path waypoint list 

generated in Vericut. 

p. defaultwidth: This is the maximum separation in mm desired between parallel 

passes used to cover rectangular areas specified in the scan path waypoint list. If 

the width of the rectangular area does not divide evenly by the default width 

specified here, then the number of passes is rounded up and scan passes are 
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distributed evenly resulting in a slightly smaller separation.  A default width of 

50mm was used in testing to ensure that parallel passes maintained at least some 

overlap regardless of part depth since the width of the scanner beam at the near 

end of the measurement range is 51mm (increasing to 73mm at the far end of the 

measurement range). 

2. ProcessCalibrationScans.m 

The MATLAB script used to process the calibration scans and calculate the transformation 

matrix between the machine end effector and scanner frame allows for the following input: 

a. path: This is a text string giving the file path to the raw scan files generated by the 

scanning executable.  The base name of the files themselves should be OUT unless 

the files or the code to generate them has been modified. 

b. hybridmode: This is set to 1 if using hybrid mode scanning and will then look for 

an offset file describing the offsets calculated between the continuous and 

discrete scans as generated by the data alignment script. Set to 0 if using a 

machine which has consistent startup timing and therefore a constant 

acceleration offset, or if using an encoder signal to trigger scanning. 

c. nums: This is a list of the file numbers of the calibration scan passes. If using the 

basic set of variations described above, this should be the numbers 0-4.  If 

additional variations are used to increase accuracy, then the scan file numbers 

should be edited appropriately – otherwise this need not be changed. 

d. startpos: This should be a matrix with rows corresponding to the start position [X 

Y Z W B] axis locations for each scan pass.  

e. step: This is the distance step between scan samples in mm.  

f. offsetpath/offset: If hybrid mode is being used, then specify the file path to the 

offset file which was generated by the data alignment script.  If an encoder signal 

is being used to trigger scans, simply set the offset to 0. If velocity mode is being 

used, then enter the correct offset value for the machine found by scanning the 

same scan path segment on a sloped surface from opposite directions, plotting 

the raw results (reverse the order of one of the scans so that the displayed results 

are again in the same direction) of height with respect to sample number, and 

identifying the offset (in number of samples) between respective sample numbers 

for the same part height value.  The correct offset will be half the total difference 

since each scan is offset in opposite directions.   

3. FindOffsets.m 

This script processes scans from both velocity mode and discrete mode scanning and 

calculates the offset of each velocity mode segment with respect to the actual positions 

recorded by the sparse discrete data. The following inputs are needed: 

a. path: This is a string that contains the entire file path and the “base” name of the 

continuous scan displacement files. The “base” name is the portion of the file 
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name before the #.txt portion. The code increments through all displacement files 

by appending the #.txt portion during operation. 

b. nums: This is a row vector that corresponds to the number of scan passes. It should 

contain the numbers 0 to N-1 where N is the number of scan passes. 

c. discretepath: This is a string that contains the entire file path and file name for the 

discrete displacement measurements. 

d. savepath: This is a string that contains the entire file path and file name for the 

outputted file containing the offset for each of the scan passes. 

e. discretenums: This is a cell array that separates the discrete scan lines into the 

corresponding scan passes of the continuous measurements. The number of cells 

in the cell array corresponds to the number of scan passes for the continuous 

measurements, and the i+1 cell contains all discrete measurements for the i scan 

pass. 

4. string = point2string (point) or point2string(point,B) 

This function converts a vector containing the numerical axis positions [X,Y,Z,B,W] into a string 

containing the NC code representation of that point. i.e. [0 0 0 0 0] is converted to ‘X0 Y0 Z0 

B=DC(0) W0’.  The default is to use the B=DC(#) format for specifying B axis commands, but if 

there are two arguments passed to the function then it will instead use the B# format. 

5. done = writescanline(file,posfile, start, finish, on, off,buffer,setnum, spindle,increment) 

This adds the relevant entries for one continuous scan segment to the NC code file and the 

position file specified by the inputs ‘file’ and ‘posfile’. ‘start’ and ‘finish’ are the axis commands 

for the start and end of the desired scan segment. ‘on’ and ‘off’ are strings representing the M 

command used to turn the trigger signal on and off. ‘buffer’ is the length of the extension added 

to each end of the scan path to account for acceleration and startup delay. ‘setnum’ is the path 

segment number. ‘spindle’ is the angle of the spindle. ‘increment’ is the step size between scan 

samples. The output is a dummy variable and is returned 1 on completion. 

6. newsetnum = writediscscanline(file,posfile, start, finish, on, off,setnum, 

spindle,spacing) 

This adds the relevant entries for one scan segment done in discrete mode to the NC code file 

and the position file.  Inputs are equivalent to those described in the function ‘writescanline’.  

The output is the value of the input ‘setnum’ incremented by one. 

7. [starts finishes] = dissectpath(start, finish, batchlength, buffer) 

This function checks if a scan path segment is too long to be completed in one scan batch and if 

so, breaks it into multiple segments.  ‘start’ and ‘finish’ are the endpoints of the scan path 

segment. ‘batchlength’ is the length possible to scan in one batch given current batch size, feed 

rate, and sample rate settings. ‘buffer’ is the length of the extension necessary at either end of 

the scan segment to allow for acceleration/deceleration and startup delay. The output is two 
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matrices where each row contains the start or finish axis positions for the resulting segments.  If 

the segment is not too long for a single batch then the outputs will be a single row each and 

identical to the inputs ‘start’ and ‘finish’. 

8. offset = CalcOffset(vel,disc,discloc,searchnum) 

Finds the offset value for a single scan pass.  ‘vel’ is the data gathered in velocity mode. ‘disc’ is 

the data gathered in discrete mode. ‘discloc’ is the nominal sample numbers from the velocity 

data that the discrete data should align with if there were no offset.  ‘searchnum’ is the distance 

in number of samples that the offset should be searched for (i.e. the maximum offset allowed as 

a result).  The output is the offset measured in number of velocity data samples.  This can be a 

fractional value if the correct offset lies between two samples.   

9. pts = calibplane2pts(I,t) 

Extracts the location of the corner points from the raw scanner data based on user identification 

of the flat areas of each plane.  ‘I’ is the ‘image’ generated from the scan data and ‘t’ is the 

threshold used for plane fitting.  The output is a 3x4 matrix of the 4 corner points extracted as 

measured in the scanner frame (X and Y values are given in terms of sample number.  Z is the 

actual measured distance to the surface from the scanner).  

10. [R t transf pt] = FindScannerTool( meas, cmm, varargin ) 

Calculates the transform as well as calibration corner points.  ‘meas’ are the locations of the 

corner points as measured by the scanner.  It is a 3 by p*n matrix where p is the number of 

keypoints (4 – the corners between the 5 surfaces on the calibration part) and n is the number 

of variations in start points for the scan passes (5 for the minimal set of passes to identify the 

transformation). The X and Z values are derived directly from the scanner measurements. The Y 

value of meas is based on the distance that the machine has traveled from the starting position 

when that point was passed. ‘cmm’ are the axis locations for the start of each scan pass variation. 

‘varargin’ is an optional argument that can be used to specify the location of the keypoints 

instead of calculating them from the scanner measurements.  This was evaluated as an alternate 

calibration strategy, but was found to be less accurate if the locations of the corners were 

determined via touch probe measurements of the surfaces. The outputs are the rotation matrix 

‘R’ describing the orientation of the scanner with respect to the machine tool frame, the 

translation ‘t’ of the scanner with respect to the machine tool frame, ‘transf’, which is the full 4x4 

transformation matrix that combines ‘R’ and ‘t’, and ‘pt’ which are the locations of the keypoints 

that were identified (corners of the calibration block) as measured in the machine base frame.  

The forward kinematics function used for the machine is hardcoded into this function, so if a 

different machine is used, an alternate forward kinematics function should be created and the 

reference in this code changed. 

11. RANSAC plane fitting code (ransacfitplane, ransac, fitplane, iscolinear) 
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This is public MATLAB code that implements the RANSAC (Random Sample and Consensus) plane 

fitting method (a relatively fast method for fitting planes to data while automatically rejecting 

outlier data from influencing the fit) and is available without use restrictions (other than 

maintaining the reference to the author in the code comments) from the MATLAB file exchange. 

The code was developed by Peter Kovesi of The University of Western Australia. 

12. NEWxyzPoints = PC_HTM(xyzPoints,HTM) 

Returns a new  point set data by applying a homogeneous transformation matrix, HTM to a 3-D 

point data set represented by a matrix with three columns. 

13. ptCloud = pointCloud(xyzPoints) 

Stores a 3-D point data set, xyzPoints as a point cloud object, ptCloud. The point cloud object can 

be used in the following point set calculation. See 

https://www.mathworks.com/help/vision/ref/pointcloud-

class.html?searchHighlight=pointCloud&s_tid=doc_srchtitle for more details. The point set can 

be retrieved from the point cloud object by accessing its “Location” property — i.e., 

ptCloud.Location. 

14. indices = findPointsInROI(ptCloud,roi) 

Searches a point cloud object, ptCloud and return the indices of the points which are inside of 

the region of interest, roi. For more information, see 

https://www.mathworks.com/help/vision/ref/pointcloud.findpointsinroi.html?searchHighlight=

findPointsInROI&s_tid=doc_srchtitle 

15. ptCloudOut = select(ptCloud,indices) 

Returns a pointCloud object containing the points selected using linear indices. 

https://www.mathworks.com/help/vision/ref/pointcloud.select.html?searchHighlight=select&s

_tid=doc_srchtitle 

16. [model ,inlierIndices,outlierIndices]= 

pcfitplane(ptCloudIn,maxDistance,referenceVector,maxAngularDistance) 

Detect a planel and extract it from the point cloud, ptCloudIn. This function provides a robust 

way for data sampling and feature extraction. More details can be found at: 

https://www.mathworks.com/help/vision/ref/pcfitplane.html?searchHighlight=pcfitplane&s_ti

d=doc_srchtitle#busqbp7-1-maxDistance 

17. NEWxyzPoints = LSQ_plane_filter(xyzPoints,n) 

https://www.mathworks.com/help/vision/ref/pointcloud-class.html?searchHighlight=pointCloud&s_tid=doc_srchtitle
https://www.mathworks.com/help/vision/ref/pointcloud-class.html?searchHighlight=pointCloud&s_tid=doc_srchtitle
https://www.mathworks.com/help/vision/ref/pointcloud.findpointsinroi.html?searchHighlight=findPointsInROI&s_tid=doc_srchtitle
https://www.mathworks.com/help/vision/ref/pointcloud.findpointsinroi.html?searchHighlight=findPointsInROI&s_tid=doc_srchtitle
https://www.mathworks.com/help/vision/ref/pointcloud.select.html?searchHighlight=select&s_tid=doc_srchtitle
https://www.mathworks.com/help/vision/ref/pointcloud.select.html?searchHighlight=select&s_tid=doc_srchtitle
https://www.mathworks.com/help/vision/ref/pcfitplane.html?searchHighlight=pcfitplane&s_tid=doc_srchtitle#busqbp7-1-maxDistance
https://www.mathworks.com/help/vision/ref/pcfitplane.html?searchHighlight=pcfitplane&s_tid=doc_srchtitle#busqbp7-1-maxDistance
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As shown in Figure 85, the function fits the input point set as a best fit plane and remove the 

outliers in the point set, which deviate by n times the standard deviation(of the distance to the 

best fit plane). The recommended value for n is 2.5~3 (remove about 0.3~1.6% of points).  

 

Figure 85 Outlier removal using the point-set filter. 

 

18.  [𝐴𝑛, 𝑏𝑛]=LPP_Constraints_4DOF(xyzPoints,p,n,N) 

This function generates the nth constraint set, 𝐴𝑛𝑣 ≤ 𝑏𝑛 for the linear programming problem 

(slack variables are included) with a total of N virtual gages (N ≥ n), where p is the row vector 

with four plane parameters, representing the gage plane, ax + by + cz + d ≥ 0. 

19. x = linprog(f,A,b) 

Solves the solution of the linear programming problem specified by: 

 Min
𝑣

𝑓𝑇𝑣 such that 𝐴𝑣 ≤ 𝑏,  

where 𝑓 is the vector of coefficients of target function, 𝑣 is the vector of all controllable variables, 

𝑏 = [𝑏1
𝑇  … 𝑏𝑁

𝑇]
𝑇

 is the vector of linear inequality constraints and 𝐴 = [𝐴1
𝑇  … 𝐴𝑁

𝑇]
𝑇

 is the 

matrix of linear inequality constraints. For more information, see 

https://www.mathworks.com/help/optim/ug/linprog.html?searchHighlight=linprog&s_tid=doc

_srchtitle#buusznx-A 

20. [C_PS,C_PS_HTM,PC_HTM,tol_PS,tol_PS_HTM]=color_tol(xyzPoints,HTM,p) 

Returns the color code of every point in the point cloud based on the distance from the point to 

the virtual gage, where 

C_PS is the color code matrix of the uncompensated point set, 

https://www.mathworks.com/help/optim/ug/linprog.html?searchHighlight=linprog&s_tid=doc_srchtitle#buusznx-A
https://www.mathworks.com/help/optim/ug/linprog.html?searchHighlight=linprog&s_tid=doc_srchtitle#buusznx-A
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C_PS_HTM is the color code matrix of the compensated point set (after the compensation 

homogeneous transformation matrix has been applied), 

PC_HTM is the point set with compensation, 

tol_PS is the machining allowance of the uncompensated point set, 

tol_PS_HTM is the machining allowance of the compensated point set, 

HTM is the compensation homogeneous transformation matrix and  

p is the row vector with four plane parameters, representing the gage plane, ax + by + cz + d ≥

0. 

21. pcshow(xyzPoints) or pcshow(ptCloud) 

Displays points set data or point cloud. 

See https://www.mathworks.com/help/vision/ref/pcshow.html for more detailed information. 

4.3.6.2 Data structure 

For development of laser scan paths for in machine scanning, there are three different file types 

that are generated: path waypoint lists, NC code, and position files.  The NC code is an .MPF file 

generated that is suitable for loading and running on the machine.  The path waypoint list and 

position files are structured files which are used by the path generation and scanning code and 

have the following format: 

1. Path waypoint list 

The path waypoint list is created using the Vericut MDI and is saved as a text file.  Each row of 

text should correspond to either the axis coordinates for a waypoint, a keyword to modify 

processing of following waypoints, or a spindle repositioning command of the form SPOS=[ang]. 

Each waypoint is listed as a row of text with the machine coordinates for that waypoint, with 

each axis specified by a letter followed by the numerical coordinate.  Spaces should separate 

each axis. Waypoints should generally be listed in pairs corresponding to the beginning and end 

of each scan segment. Exceptions to this are with respect to commands that follow a defined 

keyword such as ‘noscan’ (for collision avoidance waypoints) which is followed by a single 

waypoint, or ‘areascan’ (for scanning rectangular areas) which is followed by three waypoints. 

2. Position file 

The position file is a CSV file which is automatically generated by the code which processes the 

path waypoint lists and generates the NC code to be run by the machine while scanning.  It 

contains the transformation matrix representing the position and orientation of the scanner 

frame with respect to the machine tool end effector frame, the number of invalid scan samples 

expected to be acquired during the acceleration period, and the starting axis coordinates and 

step difference between samples, and number of samples for each scan segment.  A sample of 

https://www.mathworks.com/help/vision/ref/pcshow.html
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the format is given below, including the first two scan segments (note that the transformation 

entered in this sample is simply the identity matrix – in actual practice this would be replaced by 

an actual transformation representing the location and orientation of the scanner): 

#Scanner Transformation    
1 0 0 0   
0 1 0 0   
0 0 1 0   
0 0 0 1   
#Acceleration scanlines    
500      
#Set 1      
*Start Location     
-535 969.63 1126 -500 90 0 

*Step      
0 0.1 0 0 0 0 

*Number of Steps     
2401      
#Set 2      
*Start Location     
20 1225.63 1708 -635 0 0 

*Step      
0 -0.1 0 0 0 0 

*Number of Steps     
2501      

 

The raw data output by the in-machine scanning code is in the form of a text document with the 

numerical data measured by the scanner with a header row giving the location along the scan 

line of each column. (-40mm to 39.9mm every 0.1mm) The raw values are integers which 

correspond to measurements in mm x 10-5. The values themselves correspond to the distance to 

the part (or a very large negative number in cases of no valid surface detected) and each row is 

one scan line sample in the order that they were acquired.  

When using the hybrid method for in-machine scanning (necessary for the PAMA machine) an 

offset file is also generated to record the offset of the continuous version of each scan segment 

from the actual positions measured using the discrete method.  This is in the form of a vector 

with the offsets for each scan segment in sequence and is saved as a text file using a space 

delimiter for transfer between the MATLAB and C++ components. 

Since the programs are developed in MATLAB. The data structure follows the conventions of 

MATLAB. 

1. Point set data(matrix form) 
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A point set is represented by a k by 3 matrix, where k is the size of the point set. The point set 

can be converted to point cloud class using “pointCloud” command. For the functions 1, 2, 6, 7 

and 9 listed previously, the user should input a point set using a matrix. 

2. Point clouds  

 The point cloud class (as shown in second function in the list of functions) is a MATLAB data 

structure for use of certain point cloud algorithms (functions 3, 4 and 5). It must be noted that 

point cloud cannot be fed into functions 1,2,6,7 and 9 directly. To input a point set data from a 

point cloud, one must extract the location information in a point cloud using its “Location” 

property—i.e., ptCloud.Location returns the matrix form of the point cloud data.  

3. Virtual gage plane parameter sets 

This structure is used in function 7 and 9. A virtual gage plane, which represents an inequality, 

ax + by + cz + d ≥ 0 is specified using a row vector with four plane parameters, [a b c d], where 

𝑎2 + 𝑏2 + 𝑐2 = 1. 

4. Homogeneous transformation matrices (HTMs) 

HTM used in the programs and functions should followed the convention: 

 𝑇 = [

𝑟11 𝑟12 𝑟13 𝑝1

𝑟21 𝑟22 𝑟23 𝑝2

𝑟31 𝑟32 𝑟33 𝑝3

0 0 0 1

], where [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] is a rotation matrix and [𝑝1 𝑝2 𝑝3]
𝑇 is a vector 

of translation. 

4.3.7 Features & Attributes 

The Adaptive machining implementation has the following features: 

1. It is application agnostic. It can be used for raw casting metrology or finished (part) 

metrology. 

2. It can be used with on-machine scanning or off-machine scanning 

3. In-machine scanning can be used with a variety of trigger methods (encoder, time-based, 

discrete, hybrid) depending on the accessibility of machine signals and consistency of 

motion timing. 

4. It supports both in-fixture scanning as well as scanning of the part and fixture separately 

5. In its current implementation it support primarily planar surface metrology. Extensions to 

cylindrical surface metrology have been developed, but not tested on industrial examples. 

6. In its current implementation, it has been used to verify dimensional/material condition 

tolerance specification. However, only supports form tolerance specifications. 
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7. The system enables quick and efficient manner to modify the nominal NC program and 

verify the compensation in workspace errors and collisions during machining, if any. The 

system does not affect the existing or saved work offsets, if any, by the machine operator. 

 

4.3.8 Modes of Operation 

The Technology is designed for new product introduction or current product improvements. 
Once the features are identified, 

1. During a new part introduction, a metrology/manufacturing engineer sets up the 

Adaptive Machining criteria from the CAD model of the part.  

2. Once set up, during production, the machine operator or production inspector scans the 

part. 

3. For in-machine scanning approach, metrology/manufacturing engineer generates scan 

path from Vericut with automated in-machine scanning approach. 

4. metrology/manufacturing feeds the data into the software, calling program 1 and then 

program 2 sequentially. 

5. Then, offset information is imported to compensated NV program generator. 

6. Operator load the compensated NC program into the controller and run the program. 

 

5. ACCESSING THE TECHNOLOGY 

BIP and IP claims have been documented in a separate file - “Post Project BIP and IP Claims”. Also, 
the technology and system requirements have been documented in the previous sessions - 
“Software and System Requirements”. 

6. INDUSTRY IMPACT & POTENTIAL 

These technologies can serve any manufacturing company that experiences problems related to 

setup errors, asset accuracy estimation, or incoming material variation. Specifically, industries 

where single rough piece-part cost can be in the tens of thousands of dollars, a single scrap piece 

(or even a piece that requires significant amount of rework) can easily wipe out any profit for a 

given time period. In large component manufacturing, the scrap cost is high, but the supply chain 

lead time tends to be orders of magnitude longer than the final machining process time. In these 

cases, there is simply no part available that can replace the scrap piece, creating delays in ship 

dates from that point down the remaining supply chain. This technology is proposing to minimize 

the exposure of machining facilities to the deviations that most frequently cause the conditions 

that generate scrap and/or rework.  
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7. TECH TRANSITION PLAN & COMMERCIALIZATION 

Based on the membership level, some DMDII members have access to the final report as well as 
the user manuals of hardware and software that have been documented. Also, video demo has 
been recorded to show potential users the operation of the software. 
 
Identify Future Plans 
Software code developed from this project need to be maintained and improved for large 
implementation. DMDII, Caterpillar Inc. and IMVM team are working with commercialization 
partners on commercializing the current technologies for broader industry costumers as well as 
larger implementations inside Caterpillar Inc. 
 
Identified Barriers to Adoption 
The cost, both capital cost and variable cost, could be the barrier to prevent adoption of these 
technologies. Based on different scenarios, value calculation should be performed to justify the 
initial investment. 
 
8. WORKFORCE DEVELOPMENT 

There are more than 10 graduate students have been working on these projects as a cross 
functional team. Students built up their technical expertise and shared with other team 
members.  By working in a production environment, they also built up more practical skills from 
solving real industry issues. Two conference papers and one journal paper have been published 
from the team.  
 
9. CONCLUSIONS/RECOMMENDATIONS 

From this Integrated Manufacturing Variation Management (IMVM) project, two technologies 
have been developed. 

• Manufacturing asset volumetric error compensation (VEC) technology with laser tracker  

• Adaptive machining technology with part scan and automatic planning for numerical 
control programming 

Volumetric error compensation (VEC) is the use of a laser tracker to obtain machine errors.  

Machine tools normally are calibrated using classical methods with laser interferometers, dial 

gauges, and ball bars.  These methods are slow and highly dependent on maintenance training 

and skill.  They also provide a small view of the workspace errors, typically errors along a line, 

rather than throughout the volume.  In contrast, the VEC methods utilize a laser tracker that 

can rapidly measure the entire volume by tracking and measuring the 3D location of the tool 

tip.  The improvement of machine tool accuracy is more than 80% compared to uncompensated 

machine tool assets. Compared to B5.54 test, the error of this technology is less than 20%. Also, 

the measurement cycle is less than one shift.  

Adaptive machining technology is compatible with either in-machine or off machine scanning 
approaches and be able to generate an optimized offset by fitting the scanning points cloud to 
the CAD model. Adaptive machining can be achieved by compensated tool path. It allows for 
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large reductions in setup times for new parts, new fixtures, or parts that see a large variation in 
the rough condition as delivered to the machining operation while minimizing human interaction 
in the machining setup process. 
 
10. LESSONS LEARNED 

Couple of lessons that learned from this project. 
1. Thermal qusi-static error can contribute more than 50% in certain circumstance. 
2. In future thermal deformation measurements of the machine tool, measurement of the 

machine temperature, rather than air temperature, is recommended. 
3. Involve the commercialization partner into the project at the beginning of the project;  
4. Keep the 1st adopter in technology development at an early stage; 

 
 
11. APPENDICES 

1. Video demo has been submitted to DMDII 

2. Manual of Volumetric Error Compensation and Adaptive Machining attached below. 
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